

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Reaction Control in the Organocatalytic Asymmetric One Pot, Three-component Reaction of Aldehydes, Diethyl α -Aminomalonate and Nitroalkenes: toward Diversity-oriented Synthesis

Yan-Kai Liu, [a] Hao Liu, [a] Wei Du, [a] Lei Yue, [a] and Ying-Chun Chen*[a,b]

[a] Key laboratory of Drug-Targeting and Drug Deliver System of Education Ministry

Department of Medicinal Chemistry, West China School of Pharmacy

Sichuan University, Chengdu, 610041 (China)

[b] State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041 (China)

Table of Contents

- 1. General methods
- ${\bf 2.} \ \ {\bf General\ procedure\ for\ the\ one\ pot,\ three-component\ Michael\ addition}$
- 3. General procedure for the one pot, three-component $[\mathbf{3}+\mathbf{2}]$ cycloaddition
- 4. NMR and HPLC spectra

1. General methods

NMR spectra were recorded with tetramethylsilane as the internal standard. Column chromatography was performed using silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. Optical rotations were measured at 589 nm at 20 °C. TLC was performed on glass-backed silica plates. Enantiomeric excess was determined by HPLC analysis on Chiralpak or Chiralcel OD, AD or IC columns. Commercial grade solvents were dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). The chiral thiourea or urea catalysts were prepared according to the literature procedures.^[1]

[1] a) B.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L.-S. Ding, Y. Wu, Synlett 2005, 603; b) Y. Zhang, Y.-K. Liu, T.-R. Kang, Z.-K. Hu, Y.-C. Chen, J. Am. Chem. Soc. 2008, 130, 2456; c) M. S. Taylor, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 10558.

2. General procedure for the one pot, three-component Michael addition

To a stirred mixture of aldehyde **6** (0.1 mmol) and 4 Å MS (80 mg) in toluene (0.8 mL) was added diethyl α-aminomalonate **7** (18.0 mg, 0.1 mmol,) at 0 °C. The mixture was stirred for 2 h and then nitroalkenes **3** (0.12 mmol) and catalyst **1b** (4.0 mg, 0.01 mmol) were added. After the stated reaction time, product **4** was isolated by FC on silica gel eluted with EtOAc/petroleum ether. The enantiomeric excess was determined by HPLC analysis on chiral column.

4a 93% yield;
$$R_f = 0.5$$
 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20} = +199.0$ ($c = 0.99$ in CHCl₃); 96% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.51 min, t (major) = 8.45 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.65$ (s, 1H), 7.87-7.85 (m, 2H), 7.54-7.47 (m, 3H), 7.41-7.39 (m, 2H), 7.26-7.23 (m, 3H), 5.33 (dd, $J = 13.6$, 3.6 Hz, 1H), 5.16 (dd, $J = 13.2$, 10.4 Hz, 1H), 4.58 (dd, $J = 10.4$, 3.6 Hz, 1H), 4.36-4.22 (m, 2H), 4.06-3.81 (m, 2H), 1.29 (t, $J = 7.2$ Hz, 3H), 1.10 (t, $J = 7.2$ Hz, 3H) ppm: ¹³C NMR (75 MHz, CDCl₂): $\delta = 168.1$

4.06-3.81 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 168.1$, 167.3, 166.7, 131.9, 129.5, 129.2, 128.8, 128.6, 128.3, 128.2, 127.1, 78.7, 77.2, 62.7, 62.0, 48.8, 13.9, 13.7 ppm; ESI-HRMS: calcd. for $C_{22}H_{24}N_2O_6+H$ 413.1713, found 413.1709.

4b 87% yield; R_f= 0.5 (petroleum ether/EtOAc = 8:1);
$$[\alpha]_D^{20}$$
 = +116.7 (c = 1.83 in CHCl₃); 98% ee , determined by HPLC analysis [Daicel chiralcel OD, n -hexane/ i -PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 5.60 min, t (major) = 10.60 min]; ¹H NMR (400 MHz, CDCl₃): δ = 8.64 (s, 1H), 7.86-7.83 (m, 2H), 7.58-7.48 (m, 2H), 7.43-7.21 (m, 5H), 5.31 (dd, J = 13.6, 3.6 Hz, 1H), 5.10 (dd, J = 13.2, 10.4 Hz, 1H), 4.56 (dd, J = 10.4, 3.6 Hz, 1H), 4.38-4.22 (m, 2H), 4.09-4.00 (m, 1H), 3.97-3.87 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 168.5, 167.1, 166.5, 135.8, 134.7, 134.3, 132.1, 130.8, 128.81, 128.77, 128.6, 78.5, 77.0, 62.9, 62.2, 48.2, 13.9, 13.8 ppm; ESI-HRMS: calcd. for C₂₂H₂₃CIN₂O₆+Na 469.1142, found 469.1144.

4c 93% yield;
$$R_f$$
= 0.6 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +95.5 (c = 0.61 in CHCl₃); 98% ee , determined by HPLC analysis [Daicel chiralcel OD, n -hexane/ i -PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 5.87 min, t (major) = 8.89 min]; ¹H NMR (400 MHz, CDCl₃): δ = 8.63 (s, 1H),

7.87-7.83 (m, 2H), 7.56-7.48 (m, 3H), 7.41-7.29 (m, 3H), 7.24-7.17 (m, 1H), 5.30 (dd, J = 13.6, 3.6 Hz, 1H), 5.11 (dd, J = 13.2, 10.4 Hz, 1H), 4.55 (dd, J = 10.4, 3.6 Hz, 1H), 4.36-4.22 (m, 2H), 4.07-3.91 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 168.4$, 167.1, 166.5, 138.3, 135.8, 134.0, 132.1, 130.1, 129.7, 128.9, 128.8, 128.5, 127.4, 78.3, 77.0, 62.9, 62.3, 48.4, 13.9, 13.8 ppm; ESI-HRMS: calcd. for $C_{22}H_{23}CIN_2O_6+Na$ 469.1142, found 469.1145.

4d 80% yield; R_f = 0.5 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +110.2 (c = 1.80 in CHCl₃); 94% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 5.90 min, t (major) = 8.75 min]; 1 H NMR (400 MHz, CDCl₃): δ = 8.62 (s, 1H), 7.87-7.84 (m, 2H), 7.71-7.69 (m, 1H), 7.54-7.48 (m, 3H), 7.35-7.32 (m, 1H), 7.20-7.15 (m, 2H), 5.35 (dd, J = 22.8, 3.6 Hz, 2H), 5.13 (dd, J = 11.6, 2.8 Hz, 1H), 4.37-4.25 (m, 2H), 4.12-4.04 (m, 1H), 3.94-3.86 (m, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H) ppm; 13 C NMR (75 MHz, CDCl₃): δ = 168.3, 167.1, 166.6, 135.8, 135.3, 134.6, 132.0, 129.6, 129.5, 129.2, 128.8, 127.2, 78.7, 77.1, 62.9, 62.3, 43.2, 13.9, 13.6 ppm; ESI-HRMS: calcd. for $C_{22}H_{23}$ ClN₂O₆+Na 469.1142, found 469.1133.

4e 84% yield; R_f = 0.6 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +89.8 (c = 6.40 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 5.97 min, t (major) = 11.71 min]; ¹H NMR (400 MHz, CDCl₃): δ = 8.63 (s, 1H), 7.85-7.83 (m, 2H), 7.56-7.48 (m, 3H), 7.39-7.37 (m, 2H), 7.31-7.29 (m, 2H), 5.30 (dd, J = 13.6, 3.6 Hz, 1H), 5.10 (dd, J = 13.6, 10.4 Hz, 1H), 4.54 (dd, J = 10.4, 3.6 Hz, 1H), 4.36-4.22 (m, 2H), 4.09-4.01 (m, 1H), 3.97-3.89 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 168.5, 167.1, 166.5, 135.8, 135.2, 132.1, 131.6, 131.2, 128.82, 128.7, 122.5, 78.4, 77.0, 62.9, 62.2, 48.2, 13.9, 13.8 ppm; ESI-HRMS: calcd. for C₂₂H₂₃BrN₂O₆+Na 513.0637, found 513.0632.

4f 83% yield; R_f = 0.6 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +57.1 (c = 0.61 in CHCl₃); 98% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 5.29 min, t (major) = 8.92 min]; 1 H NMR (400 MHz, CDCl₃): δ = 8.64 (s, 1H), 7.86-7.8-7. 4 (m, 2H), 7.5648 (m, 3H), 7.42-7.38 (m, 2H), 6.97-6.92 (m, 2H), 5.31 (dd, J = 13.6, 3.6 Hz, 1H), 5.10 (dd, J = 13.2, 10.4 Hz, 1H), 4.57 (dd, J = 10.4, 3.2 Hz, 1H), 4.37-4.22 (m, 2H), 4.08-4.00 (m, 1H), 3.96-3.88 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.12 (t, J = 7.2 Hz, 3H) ppm; 13 C NMR (75 MHz, CDCl₃): δ = 168.4, 167.2, 166.6, 164.2, 160.9, 135.8, 132.1, 131.3, 131.1, 128.82, 128.77, 127.0, 115.5, 115.2, 78.7, 77.0, 62.8, 62.2, 48.1, 13.9, 13.8 ppm; ESI-HRMS: calcd. for $C_{22}H_{23}FN_2O_6$ +Na 453.1438, found 453.1432.

4g 95% yield; R_f = 0.5 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +124.4 (c = 1.39 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 5.13 min, t (major) = 7.10 min]; 1 H NMR (400 MHz, CDCl₃): δ = 8.64 (s, 1H), 7.87-7.84 (m, 2H), 7.55-7.44 (m, 3H), 7.28-7.26 (m, 3H), 7.04 (d, J = 8.0 Hz, 2H), 5.31 (dd, J = 13.6, 3.6 Hz, 1H), 5.13 (dd, J = 13.6, 10.4 Hz, 1H), 4.54 (dd, J = 10.4, 3.6 Hz,

1H), 4.36-4.21 (m, 2H), 4.08-3.87 (m, 2H), 2.26 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 168.0$, 167.4, 166.7, 137.9, 136.0, 133.0, 131.9, 129.3, 129.1, 128.8, 78.7, 77.3, 62.6, 62.0, 48.5, 21.0, 13.9, 13.8 ppm; ESI-HRMS: calcd. for $C_{23}H_{26}N_2O_6+Na$ 449.1689, found 449.1683.

4h 83% yield; R_f= 0.4 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +130.1 (c = 1.43 in CHCl₃); 95% *ee*, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 7.00 min, t (major) = 10.13 min]; 1 H NMR (400 MHz, CDCl₃): δ = 8.64 (s, 1H), 7.87-7.84 (m, 2H), 7.53-7.48 (m, 3H), 7.33-7.31 (m, 2H), 6.78-6.76 (m, 2H), 5.29 (dd, J = 13.2, 3.6 Hz, 1H), 5.11 (dd, J = 12.8, 10.4 Hz, 1H), 4.53 (dd, J = 10.4, 3.6 Hz, 1H), 4.36-4.21 (m, 2H), 4.08-3.88 (m, 2H), 3.74 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H) ppm; 13 C NMR (75 MHz, CDCl₃): δ = 168.1, 167.4, 166.7, 159.3, 135.9, 131.9, 130.5, 128.7, 127.9, 113.7, 78.8, 77.2, 62.7, 62.0, 55.0, 48.1, 13.9, 13.8 ppm; ESI-HRMS: calcd. for C₂₃H₂₆N₂O₇+Na 465.1638, found 465.1632.

4i 90% yield; R_f = 0.6 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +93.86 (c = 0.23 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 6.03 min, t (major) = 9.85 min]; 1 H NMR (400 MHz, CDCl₃): δ = 8.70 (s, 1H), 7. 89 (d, J = 6.8 Hz, 2H), 7.55-7.48 (m, 3H), 7.20 (d, J = 5.2 Hz, 1H), 7.02 (d, J = 3.6 Hz, 1H), 6.89-6.87 (m, 1H), 5.27 (dd, J = 12.8, 3.2 Hz, 1H), 5.07-4.95 (m, 2H), 4.36-4.25 (m, 2H), 4.14-4.03 (m, 2H), 1.31 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H) ppm; 13 C NMR (75 MHz, CDCl₃): δ = 168.7, 167.0, 166.4, 137.6, 135.8, 132.0, 128.9, 128.7, 128.3, 126.6, 126.0, 79.3, 76.8, 62.8, 62.3, 45.3, 13.9, 13.8 ppm; ESI-HRMS: calcd. for $C_{20}H_{22}N_2O_6S$ +Na 441.1096, found 441.1092.

4j 89% yield; R_f = 0.5 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +99.7 (c = 0.65 in CHCl₃); 98% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 5.77 min, t (major) = 8.22 min]; 1 H NMR (400 MHz, CDCl₃): δ = 8.52 (s, 1H), 7.80-7.78 (m, 2H), 7.51-7.43 (m, 3H), 7.31-7.30 (m, 1H), 6.32 (d, J = 3.6 Hz, 1H), 6.27 (m, 1H), 5.18 (dd, J = 13.6, 3.6 Hz, 1H), 5.07 (dd, J = 13.6, 10.0 Hz, 1H), 4.81 (dd, J = 10.0, 3.6 Hz, 1H), 4.32-4.18 (m, 2H), 4.17-4.09 (m, 2H), 1.26 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H) ppm; 13 C NMR (75 MHz, CDCl₃): δ = 167.5, 167.1, 166.7, 149.7, 142.3, 135.8, 131.9, 128.8, 128.7, 110.6, 109.5, 76.6, 76.0, 62.7, 62.3, 43.5, 13.9, 13.8 ppm; ESI-HRMS: calcd. for $C_{20}H_{22}N_2O_7$ +Na 425.1325, found 425.1319.

4k 56% yield; R_f = 0.4 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +27.4 (c = 1.00 in CHCl₃); 97% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 5.61 min, t (major) = 6.66 min]; 1 H NMR (400 MHz, CDCl₃): δ = 8.49 (s, 1H), 7.77-7.74 (m, 2H), 7.50-7.41 (m, 3H), 4.92 (dd, J = 14.4, 4.8 Hz, 1H), 4.42 (dd, J = 14.4, 5.6 Hz, 1H), 4.31-4.23 (m, 4H), 3.43-3.37 (m, 1H), 1.63-1.54 (m, 2H), 1.52-1.35 (m, 2H), 1.33-1.22 (m, 6H), (t, J = 7.2 Hz, 3H) ppm; 13 C NMR (50 MHz, CDCl₃): δ = 167.9, 166.5, 135.8, 131.8, 128.8, 128.7, 78.2, 77.0, 62.4, 62.2, 43.0, 32.4, 20.4, 14.0, 13.9 ppm; ESI-HRMS: calcd. for $C_{19}H_{26}N_2O_6$ +Na 401.1689, found 401.1683.

41 60% yield; R_f = 0.7 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +28.0 (c = 1.15 in CHCl₃); 98% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 4.76 min, t (major) = 5.42 min]; 1 H NMR (400 MHz, CDCl₃): δ = 8.55 (s, 1H), 7.76-7.75 (m, 2H), 7.50-7.42 (m, 3H), 4.90 (dd, J = 15.2, 4.0 Hz, 1H), 4.54 (dd, J =

15.2, 5.6 Hz, 1H), 4.36-4.18 (m, 4H), 3.55-3.52 (m, 1H), 1.32 (t, J = 7.2 Hz, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.05 (d, J = 7.2 Hz, 3H), 0.91 (d, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 168.1$, 167.9, 166.6, 136.0, 131.7, 128.7, 78.3, 73.5, 62.5, 62.1, 46.7, 28.9, 22.5, 17.5, 14.0, 13.8 ppm; ESI-HRMS: calcd. for $C_{19}H_{26}N_2O_6+H$ 379.1869, found 379.1760.

4m 48% yield; R_f = 0.6 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +27.9 (c = 1.36 in CHCl₃); 98% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 4.54 min, t (major) = 4.95 min]; 1 H NMR (400 MHz, CDCl₃): δ = 8.53 (s, 1H), 7.76-7.73 (m, 2H), 7.50-7.42 (m, 3H), 4.88 (dd, J = 14.8, 4.0 Hz, 1H), 4.61 (dd, J =

14.8, 6.0 Hz, 1H), 4.30 (q, J = 7.2 Hz, 2H), 4.26-4.18 (m, 2H), 349-3.46 (m, 1H), 1.78-1.58 (m, 10 H), 1.34-1.24 (m, 6H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 168.1, 166.3, 136.0, 131.7, 128.7, 78.3, 74.3, 62.4, 62.1, 47.2, 39.6, 32.7, 28.1, 27.0, 26.5, 26.1, 14.0, 13.8 ppm; ESI-HRMS: calcd. for C₂₂H₃₀N₂O₆+H 419.2182, found 419.2183.

4n 93% yield; R_f = 0.5 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +153.1 (c = 1.38 in CHCl₃); 96% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 6.71 min, t (major) = 11.87 min]; ¹H NMR (400 MHz, CDCl₃): δ = 8.61 (s, 1H), 7.88-7.84 (m, 2H), 7.39-7.37 (m, 2H), 7.26-7.22 (m, 3H), 7.20-7.16

(m, 2H), 5.31 (dd, J = 13.2, 3.6 Hz, 1H), 5.13 (dd, J = 13.2, 10.4 Hz, 1H), 4.58 (dd, J = 13.2, 10.4 Hz, 1H), 4.36-4.22 (m, 2H), 4.06-3.86 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.11 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 167.6$, 167.3, 166.8, 162.6, 136.1, 132.3, 130.9, 130.7, 129.4, 128.4, 128.3, 116.2, 115.8, 78.6, 62.8, 62.1, 48.7, 13.9, 13.8 ppm; ESI-HRMS: calcd. for $C_{22}H_{23}FN_2O_6+H$ 431.1618, found 431.1606.

40 86% yield; R_f = 0.5 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +168.6 (c = 1.15 in CHCl₃); 97% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 6.69 min, t (major) = 8.87 min]; ¹H NMR (400 MHz, CDCl₃): δ = 8.60 (s, 1H), 7.75 (d, J = 7.6 Hz, 2H), 7.41-7.39 (m, 2H), 7.32-7.16 (m, 5H),

5.32 (dd, J = 13.2, 3.2 Hz, 1H), 5.15 (dd, J = 13.2, 10.4 Hz, 1H), 4.56 (dd, J = 10.4, 3.6 Hz, 1H), 4.33-4.22 (m, 2H), 4.03-3.96 (m, 1H), 3.91-3.87 (m, 1H), 2.44 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 167.9$, 167.5, 166.8, 142.5, 136.2, 133.5, 129.5, 128.8, 128.3, 128.2, 127.0, 78.8, 62.6, 62.0, 48.8, 30.0, 21.6, 13.9, 13.8 ppm; ESI-HRMS: calcd. for $C_{23}H_{26}N_2O_6+H$ 427.1869, found 427.1856.

Transformations of the Michael addition product 4a

To a solution of compound **4a** (98 mg, 0.24 mmol) and (Boc)₂O (63 mg, 0.29 mmol) in ethyl acetate (3 mL) was added 10% Pd/C (10 mg, 10%). The resulting suspension was hydrogenated at atmospheres for 12 h. The catalyst was filtered, washed with ethyl acetate (5 mL) and the filtrate was concentrated. Flash chromatography of the residue on silica gel with EtOAc/petroleum ether (1:10) as eluents yielded compound **8** (86 mg, 89%) as a colorless oil. *The hydroxylamine structure was obtained and could not be easily converted to the corresponding amine compound*. [α]_D²⁰ = +86.0 (c = 1.12 in CHCl₃); 95% *ee*, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 85/15, 1.0 mL/min, λ = 254 nm, t (major) = 12.14 min, t (minor) = 14.54 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.44-7.42 (m, 2H), 7.30-7.22 (m, 3H), 4.28 (dd, J = 14.4, 8.8 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 4.10 (dd, J = 8.8, 5.2 Hz, 1H), 4.03-3.93 (m, 2H), 3.66 (dd, J = 14.8, 5.6 Hz, 1H), 31.43 (s, 9H), 1.26 (t, J = 7.2 Hz, 3H), 1.08 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 171.4, 169.5, 155.6, 137.1, 129.6, 128.3, 127.8, 81.5, 68.5, 62.8, 62.4, 51.5, 47.8, 29.7, 28.2, 13.9, 13.8 ppm; ESI-HRMS: calcd. for C₂₀H₃₀N₂O₇+H 411.2131, found 411.2183.

To a solution of compound **8** (72 mg, 0.18 mmol) in DCM was added TEA (50 μ L, 0.36 mmol), DMAP (3 mg, 0.018 mmol) and TsCl (41 mg, 0.22 mmol) at rt. 2 h later the solution was refluxed for 24 h. The solution was washed with H₂O, dried over Na₂SO₄, and concentrated under reduced pressure to leave a residue which was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to yield compound **9** (64 mg, 90%) as a colorless oil (*The similar amination reactions have been well studied*). [2] [α]_D²⁰ = +79.8 (c = 0.93 in CHCl₃); 95% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 85/15, 1.0 mL/min, λ = 254 nm, t (minor) = 19.61 min, t (major) = 31.74 min]; ¹H NMR (400 MHz, CDCl₃): 7.33-7.30 (m, 3H), 7.29-7.19 (m, 2H), 4.40 (dd, J = 7.6, 4.8 Hz, 1H), 4.33-4.22 (m, 3H), 3.88 (m, 1H), 3.67-3.59 (m, 2H), 1.49 (s, 9H), 1.29 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 168.8, 166.3, 155.7, 137.5, 128.4, 128.1, 127.7, 80.8, 62.3, 62.0, 53.9, 51.0, 29.6, 28.2, 13.8, 13.4 ppm; ESI-HRMS: calcd. for C₂₀H₂₈N₂O₆+Na 415.1845, found 415.1847.

[2] For a spotlight, see: E. Bodio, Synlett 2008, 1744.

Since we have not been able to obtain some crystals suitable for X-ray analysis from the Michael addition products or their derivatives to determine their absolute configuration despite a great deal of efforts, we proposed a plausible catalytic mechanism based on the concerted activation mode by Takemoto et al.^[3] As illustrated in the following scheme, the chiral Michael adduct **4a** with *R*-configuration might be obtained.

Catalytic mode observed by Takemoto

Proposed catalytic mode in this Michael addition

[3] T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119.

3. General procedure for the one pot, three-component [3+2] cycloaddition

To a stirred mixture of aldehyde **6** (0.1 mmol) and 4 Å MS (80 mg) in MTBE (0.8 mL) was added diethyl α-aminomalonate **7** (18 mg, 0.1 mmol) at 0 °C. The mixture was stirred for 2 h and cooled to –20°C. Then nitroalkene **3** (0.12 mmol) and catalyst **11** (12.4 mg, 0.02 mmol) were added. After 72 h, product **5** was isolated by FC on silica gel eluted with EtOAc/petroleum ether. The enantiomeric excess was determined by HPLC analysis on chiral column.

5b 73% yield; R_f = 0.4 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +96.1 (c = 0.81 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (major) = 9.31 min, t (minor) = 12.28 min]; ¹H NMR (300 MHz, CDCl₃): δ = 7.43-7.29 (m, 10H), 5.63-5.49 (m, 2H), 5.15 (d, J = 8.8 Hz, 1H), 4.43-4.25 (m, 2H), 3.94-3.84 (m, 1H), 3.59-3.48 (m, 1H), 3.24 (d, J = 6.6 Hz, 1H), 1.30 (t, J = 9.5 Hz, 3H), 0.79 (t, J = 9.5 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 171.0, 168.5, 136.6, 135.1, 128.7, 128.6, 128.4, 128.2, 127.1, 93.7, 76.0, 64.6, 62.1, 62.0, 52.0, 13.9, 13.3 ppm; ESI-HRMS: calcd. for C₂₂H₂₄N₂O₆+H 413.1713, found 413.1709.

5c 79% yield; R_f = 0.6 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +28.3 (c = 0.76 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 9.99 min, t (minor) = 14.37 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.41-7.28 (m, 9H), 5.59 (t, J = 8.0 Hz, 1H), 5.49 (dd, J = 8.4, 5.6 Hz, 1H), 5.10 (d, J = 7.6 Hz, 1H), 4.42-4.25 (m, 2H), 4.00-3.92 (m, 1H), 3.67-3.59 (m, 1H), 3.23 (d, J = 5.6 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 171.0, 168.4, 136.6, 134.3, 133.4, 130.0, 128.9, 128.8, 128.5, 127.2, 93.1, 75.7, 64.1, 62.3, 62.2, 51.2, 14.0, 13.4 ppm; ESI-HRMS: calcd. for C₂₂H₂₃ClN₂O₆+Na 447.1323, found 447.1315.

5d 79% yield; R_f = 0.5 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +30.0 (c = 0.76 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 8.69 min, t (minor) = 12.23 min]; 1 H NMR (400 MHz, CDCl₃): δ = 7.42-7.25 (m, 9H), 5.59 (t, J = 8.0 Hz, 1 H), 5.50 (dd, J = 8.0, 5.6 Hz, 1H), 5.10 (d, J = 7.6 Hz, 1H), 4.42-4.26 (m, 2H), 4.00-3.92 (m, 1H), 3.71-3.63 (m, 1H), 3.23 (d, J = 5.2 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 0.87 (t, J

= 7.2 Hz, 3H) ppm; 13 C NMR (50 MHz, CDCl₃): δ = 170.9, 168.3, 136.9, 136.5, 134.5, 129.9, 128.9, 128.8, 128.5, 127.2, 126.9, 93.1, 75.7, 64.2, 62.3, 62.2, 51.4, 14.0, 13.4 ppm; ESI-HRMS: calcd. for $C_{22}H_{23}CIN_2O_6$ +H 447.1323, found 447.1315.

5e 69% yield; R_f = 0.5 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +16.8 (c = 0.84 in CHCl₃); 84% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (major) = 20.09 min, t (minor) = 27.96 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.46-7.32 (m, 7H), 7.27-7.25 (m, 2H), 5.71 (d, J = 4.8 Hz, 1H), 5.55 (dd, J = 7.2, 4.8 Hz, 1H),

5.46 (dd, J = 7.2, 4.8 Hz, 1H), 4.39-4.28 (m, 2H), 4.02-3.94 (m, H), 3.75-3.67 (m, 1H), 3.34 (d, J = 4.8 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 170.4, 168.1, 135.9, 135.3, 133.9, 130.2,129.4, 129.0, 128.5, 127.1, 95.1, 75.9, 65.6, 62.4, 62.2, 50.0, 14.0, 13.3 ppm; ESI-HRMS: calcd. for $C_{22}H_{23}CIN_2O_6+H$ 447.1323, found 447.1310.

5f 73% yield; R_f = 0.4 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +38.2 (c = 1.44 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 80/20, 1.0 mL/min, λ = 220 nm, t (major) = 7.11 min, t (minor) = 9.76 min]; 1 H NMR (400 MHz, CDCl₃): δ = 7.42-7.31 (m, 7H), 7.06-7.00 (m, 2H), 5.59 (t, J = 7.6 Hz, 1H), 5.49 (dd, J = 8.0, 5.2 Hz, 1H), 5.11 (d, J =

7.6 Hz, 1H), 4.42-4.25 (m, 2H), 4.00-3.92 (m, 1H), 3.66-3.57 (m, 1H), 3.22 (d, J = 5.2 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 171.1$, 168.5, 165.0, 160.1, 136.6, 130.7, 130.6, 130.4, 130.3, 128.9, 128.5, 127.2, 115.8, 115.3, 93.4, 75.7, 64.1, 62.2, 62.1, 51.1, 14.0, 13.4 ppm; ESI-HRMS: calcd. for $C_{22}H_{23}FN_2O_6+H$ 431.1618, found 431.1613.

5g 75% yield; R_f = 0.5 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +38.1 (c = 1.53 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 10.65 min, t (major) = 16.04 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.42-7.24 (m, 7H), 6.87-6.83 (m, 2H), 5.58 (t, J = 8.0 Hz, 1H), 5.49 (dd, J = 7.6, 3.6 Hz, 1H),

5.07 (d, J = 6.8 Hz, 1H), 4.41-4.25 (m, 2H), 3.98-3.90 (m, 1H), 3.78 (s, 3H), 3.65-3.57 (m, 1H), 3.21 (s, 1H), 1.30 (t, J = 7.2 Hz, 3H), 0.86 (t, J = 7.2 Hz, 3H) ppm; 13 C NMR (50 MHz, CDCl₃): $\delta = 171.3$, 168.6, 159.5, 136.7, 129.7, 128.8, 128.4, 127.2, 126.9, 114.0, 93.8, 75.8, 64.2, 62.1, 62.0, 55.3, 51.4, 14.0, 13.6 ppm; ESI-HRMS: calcd. for $C_{23}H_{26}N_2O_7$ +H 443.1818, found 443.1809.

5h 77% yield; R_f = 0.6 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +24.0 (c = 1.38 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 12.99 min, t (major) = 16.89 min]; 1 H NMR (400 MHz, CDCl₃): δ = 7.41-7.38 (m, 2H), 7.36-7.30 (m, 4H), 6.40 (d, J = 3.6 Hz, 1H), 6.34 (dd, J = 3.2, 1.6 Hz, 1H),

5.60 (dd, J = 8.4, 7.2 Hz, 1H), 5.44 (dd, J = 8.4, 4.4 Hz, 1H), 5.22 (d, J = 6.8 Hz, 1H), 4.42-4.26 (m, 2H), 4.12-4.04 (m, 1H), 3.88-3.80 (m, 1H), 3.22 (d, J = 4.0 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 170.6, 168.1, 148.0, 142.6, 136.4, 128.8, 128.4, 127.3, 110.9, 110.0, 91.3, 74.1, 63.9, 62.6, 62.3, 48.3, 14.0, 13.6 ppm; ESI-HRMS: calcd. for C₂₀H₂₂N₂O₇+H 403.1505, found 403.1489.

5i 62% yield; R_f = 0.6 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +36.2 (c = 0.80 in CHCl₃); 60% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 80/20, 1.0 mL/min, λ = 220 nm, t (minor) = 8.30 min, t (major) = 13.47 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.37-7.28 (m, 5H), 5.29 (dd, J= 8.4, 5.2 Hz, 1H), 5.05 (dd, J= 8.4, 6.4 Hz, 1H), 4.39-4.24 (m,

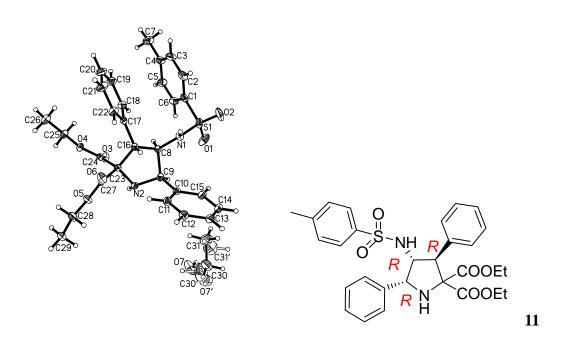
4H), 3.73-3.68 (m, 1H), 3. 00 (d, J = 5.6 Hz, 1H), 1.83-1.78 (m, 1H), 1.41-1.24 (m, 10H), 0.92 (t, J = 7.2 Hz, 3H) ppm; 13 C NMR (50 MHz, CDCl₃): $\delta = 171.1$, 168.7, 136.5, 128.6, 128.2, 127.3, 94.5, 74.1, 63.7, 62.0, 48.1, 32.1, 21.0, 14.1, 14.0, 13.8 ppm; ESI-HRMS: calcd. for $C_{19}H_{26}N_2O_6+H$ 379.1869, found 379.1867.

5j 90% yield; R_f = 0.5 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +25.9 (c = 0.91 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 8.46 min, t (major) = 11.43 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.38-7.28 (m, 9H), 5.59 (t, J = 8.0 Hz, 1H), 5.48 (dd, J = 8.0, 5.2 Hz, 1H), 5.13

(d, J = 7.2 Hz, 1H), 4.42-4.25 (m, 2H), 3.94-3.86 (m, 1H), 3.57-3.50 (m, 1H), 3.21 (d, J = 5.2 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H), 0.78 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 171.1$, 168.4, 135.2, 134.9, 134.6, 128.7, 128.6, 128.3, 93.6, 75.8, 63.7, 62.2, 62.0, 51.9, 14.0, 13.3 ppm; ESI-HRMS: calcd. for $C_{22}H_{23}ClN_2O_6+H$ 447.1323, found 447.1313.

5k 90% yield; R_f = 0.4 (petroleum ether/EtOAc = 8:1); $[\alpha]_D^{20}$ = +32.9 (c = 1.10 in CHCl₃); 86% *ee*, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 9.50 min, t (major) = 13.76 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.37-7.24 (m, 10H), 6.76 (d, J = 15.2 Hz, 1 H), 6.03 (q, J = 7.2

Hz, 1H), 5.50 (t, J = 7.2 Hz, 1H), 5.12 (d, J = 4.0 Hz, 1H), 4.94 (td, J = 7.2, 0.8 Hz, 1H), 4.40-4.22 (m, 2H), 3.89-3.81 (m, 1H), 3.53-3.45 (m, 1H), 2.81 (bs, 1H), 1.28 (t, J = 7.2 Hz, 3H), 0.77 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.5$, 168.9, 135.9, 135.2, 135.1, 128.7, 128.6, 128.5, 128.3, 128.2, 126.8, 123.8, 92.7, 76.1, 62.7, 62.3, 62.0, 52.3, 13.9, 13.3 ppm; ESI-HRMS: calcd. for $C_{24}H_{26}N_2O_6+H$ 439.1869, found 439.1858.


Transformations of the [3 + 2] cycloaddition product 5b

A 25 mL round-bottom flask containing NiCl₂·6H₂O (94 mg, 0.4 mmol), CH₃OH (1 mL), THF (0.5 mL) and compound **5b** (42 mg, 0.1 mmol, 99% *ee* after recrystallization) was sonicated to effect complete solution. Then solid NaBH₄ (30 mg, 0.8 mmol) was added (*CAUTION: frothing*) at 0 °C over 15 min. After completion monitored by TLC, the reaction mixture was diluted with H₂O (10 mL) and EtOAc (5 mL), filtered through Celite. The solid was thoroughly washed with EtOAC (10 mL). The organic layer was separated, dried over Na₂SO₄, and removed under reduced pressure to give the crude amine product, which can be used without purification.

The residue was dissolved in dry THF (1.0 mL), and to this solution was added CbzOSU (30 mg, 0.12 mmol) at room temperature. The resulting mixture was stirred overnight. After concentration, the residue was purified by column chromatography to give compound **10** as a white solid (43 mg, 84% yield for two steps). R_f = 0.5 (petroleum ether/EtOAc = 4:1); $[\alpha]_D^{20}$ = +57.9 (c = 2.55 in CHCl₃); 99% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane/i-PrOH = 80/20, 1.0 mL/min, λ = 220 nm, t (minor) = 15.42 min, t (major) = 20.51 min]; 1 H NMR (400 MHz, CDCl₃): δ = 7.36-7.24 (m, 13H), 7.13-7.11 (m, 2H), 5.08 (t, J = 6.4 Hz, 1H), 4.96 (d, J = 12.4 Hz, 1H), 4.91-4.81 (m, 2H), 4.59 (d, J = 9.6 Hz, 1H), 4.37-4.18 (m, 2H), 4.14 (d, J = 8.4 Hz, 1H), 3.92-3.84 (m, 1H), 3.58-3.50 (m, 1H), 3.37 (d, J = 5.6 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H), 0.76 (t, J = 7.2 Hz, 3H) ppm; 13 C NMR (50 MHz, CDCl₃): δ = 171.2, 170.4, 155.6, 139.8, 136.5, 128.8, 128.3, 128.2, 127.9, 127.7, 127.5, 75.1, 66.4, 62.4, 61.9, 61.7, 58.1, 53.5, 14.0, 13.3 ppm; ESI-HRMS: calcd. for $C_{30}H_{32}N_2O_6$ +H 517.2339, found 517.2386.

Compound 11 was prepared in a similar procedure as 10. Crystals of 11 suitable for X-ray analysis were fortunately obtained from its ethanol solution, incorporating an ethanol molecule in the crystals. Therefore, the absolute structure of the corresponding dipolar cycloaddition product 5b could be determined as (3R, 4R, 5R), in *endo*-selectivity.

Crystal data and structure refinement for enantiopoure 11

Identification code 11

Empirical formula $C31 H38 N2 O7 S [5b (C29H32N2O6S) + C_2H_5OH]$

Formula weight 582.69

Temperature 113(2) K

Wavelength 0.71073 A

Crystal system, space group Orthorhombic, P2(1)2(1)2(1)

Unit cell dimensions a = 11.844(2) A alpha = 90 deg.

b = 12.413(3) A beta = 90 deg.

c = 20.850(4) A gamma = 90 deg.

Volume 3065.4(11) A^3

Z, Calculated density 4, 1.263 Mg/m³

Absorption coefficient 0.154 mm^-1

F(000) 1240

Crystal size 0.24 x 0.22 x 0.20 mm

Theta range for data collection 1.95 to 27.87 deg.

Limiting indices -15<=h<=15, -16<=k<=16, -27<=l<=27

Reflections collected / unique 38040 / 7319 [R(int) = 0.0451]

Completeness to theta = 27.87 99.9 %

Absorption correction Semi-empirical from equivalents

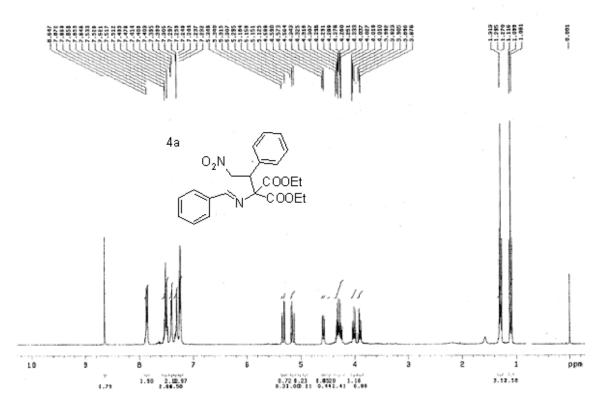
Max. and min. transmission 0.9699 and 0.9640

Refinement method Full-matrix least-squares on F²

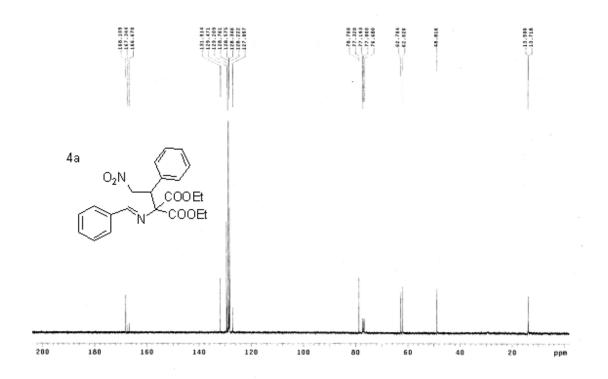
Data / restraints / parameters 7319 / 43 / 413

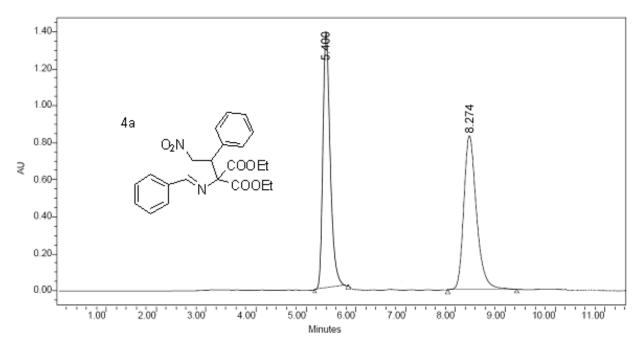
Goodness-of-fit on F² 1.058

Final R indices [I>2sigma(I)] R1 = 0.0416, wR2 = 0.0934

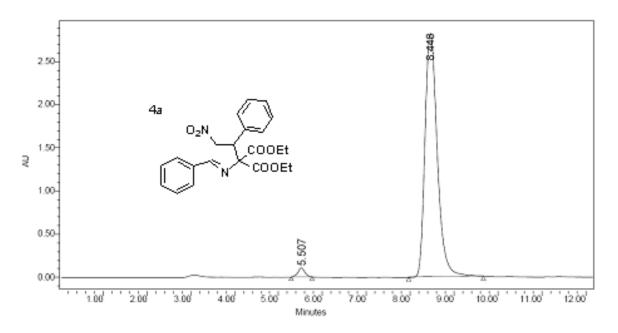

R indices (all data) R1 = 0.0468, wR2 = 0.0962

Absolute structure parameter -0.01(6)

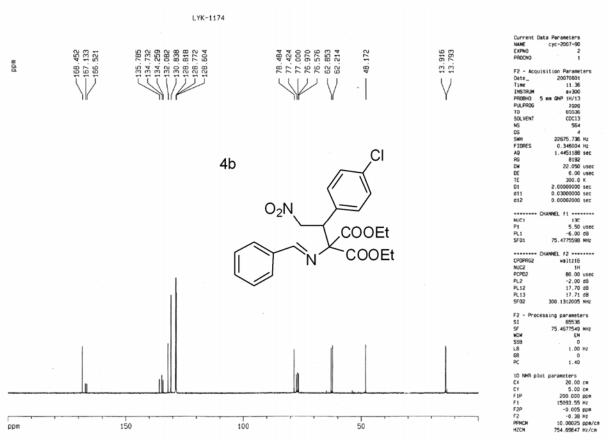

Largest diff. peak and hole 0.178 and -0.363 e.A^-3

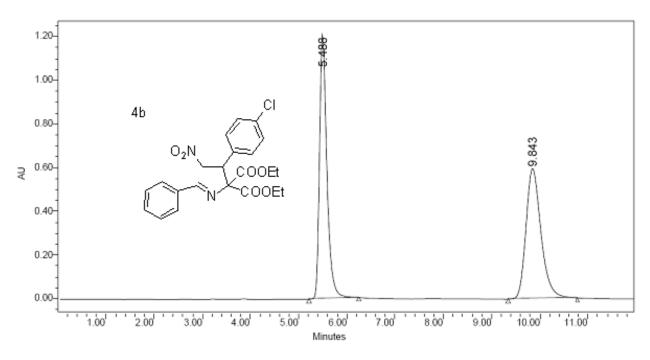

NMR and HPLC spectra

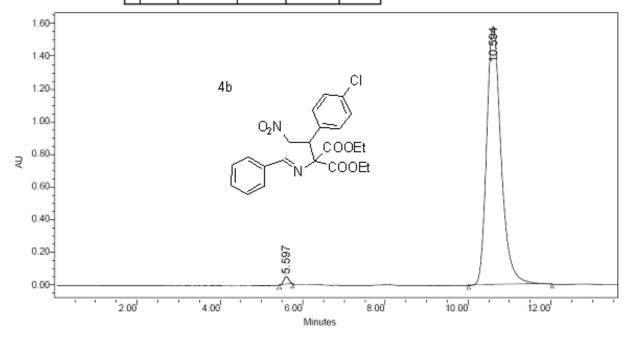
LYK-1102 ×1 COC13 2007-31-21 Pulca Sequence: S2pul

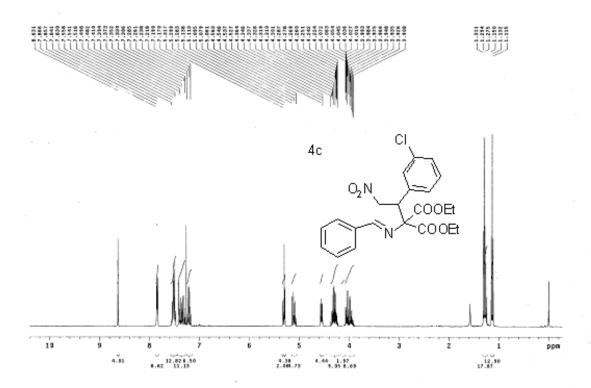


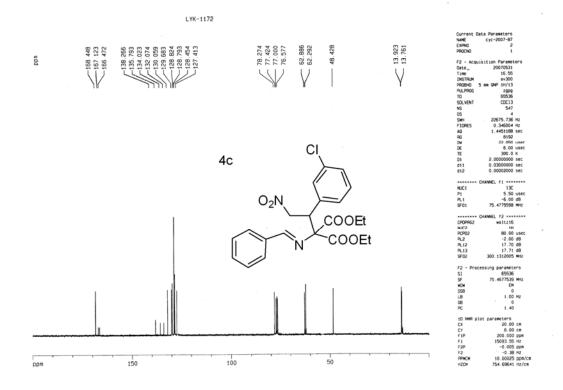
LYK-1131 G13 CDC13 2807-4-20 Pulse Sequence: E2pul

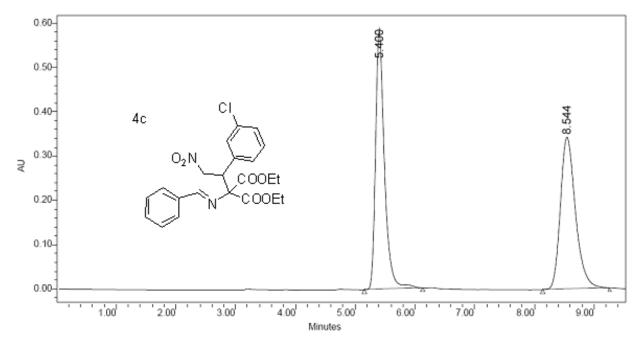


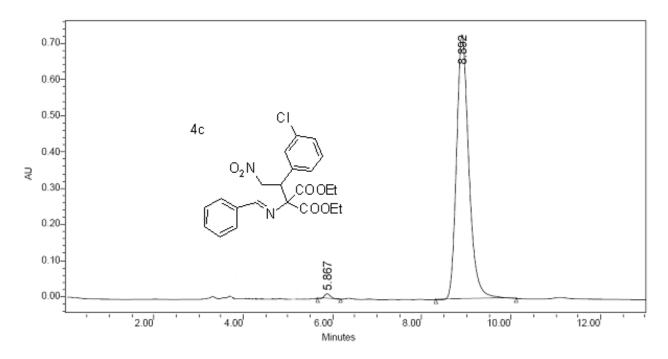

		RT (min)	Area (V *sec)	% Area	Height (V)	% Height
	1	5.400	14215015	49.04	1386346	62.44
	2	8.274	14773858	50.96	833910	37.56

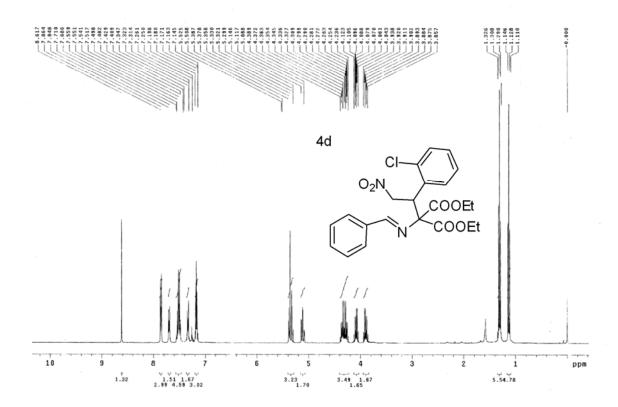

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.507	1191969	2.10	107543	3.66
[2	8.448	55439097	97.90	2831039	96.34

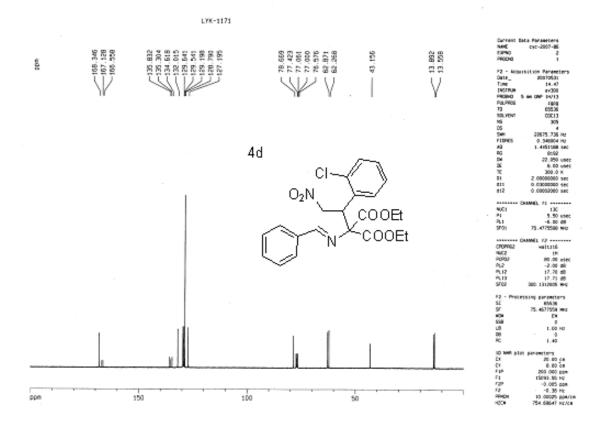


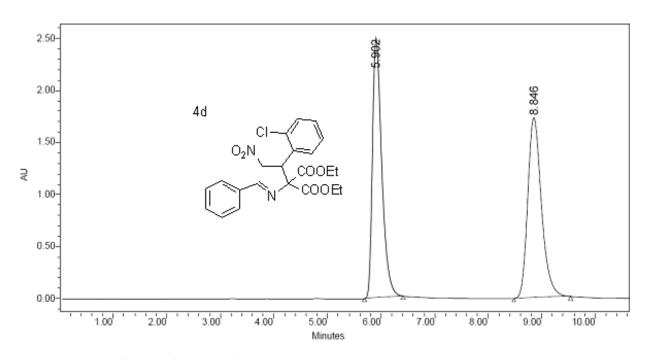



	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	5.488	12856321	49.97	1207919	67.00
2	9.843	12872942	50.03	595024	33.00

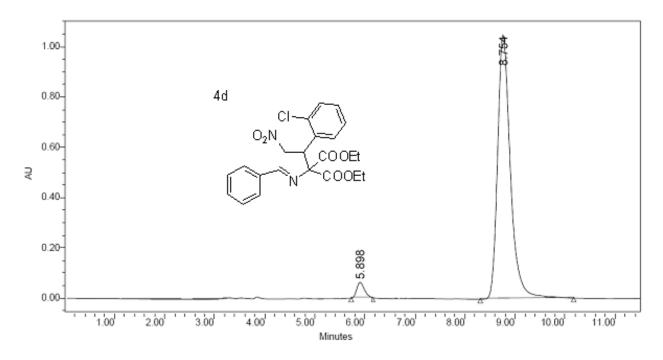

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.597	445285	1.04	49356	3.02
2	10.594	38511950	98.96	1583796	96.98

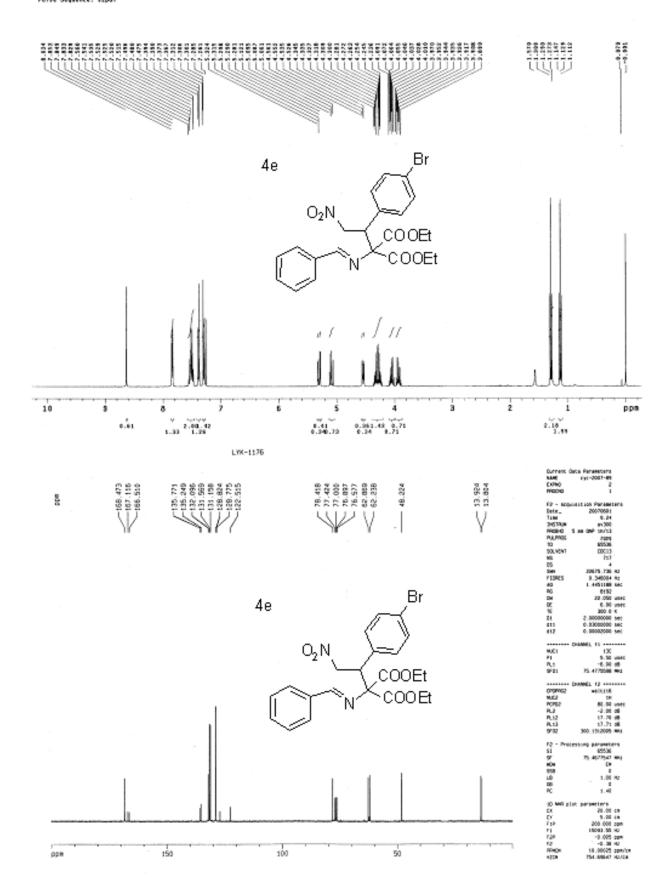


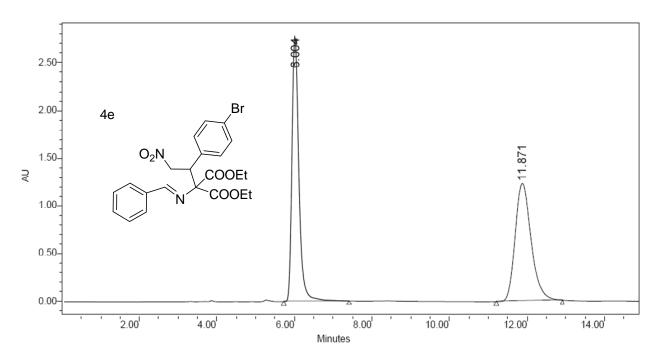

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	5.400	6088611	50.29	586198	63.06
2	8.544	6017769	49.71	343348	36.94



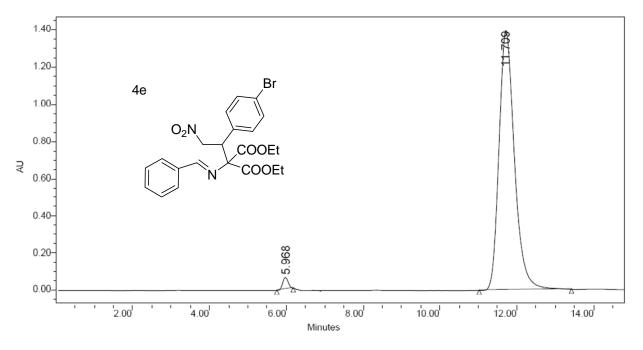
	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	5.867	143764	1.01	14229	1.91
2	8.892	14105212	98.99	731440	98.09



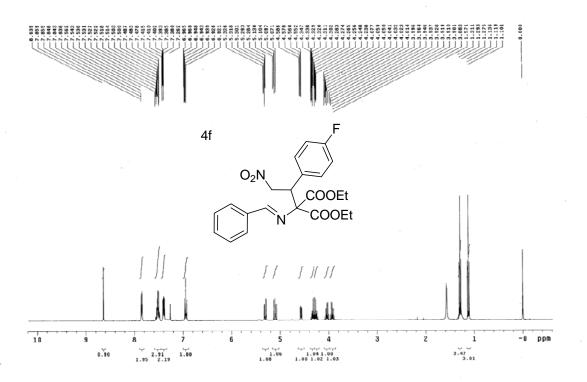


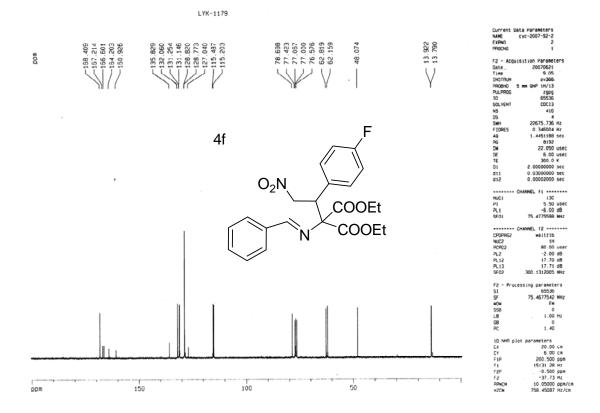


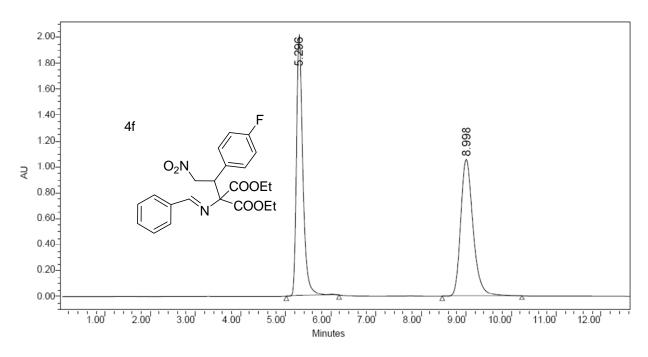
	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	5.902	30121681	49.33	2497961	59.03
2	8.846	30936430	50.67	1733715	40.97

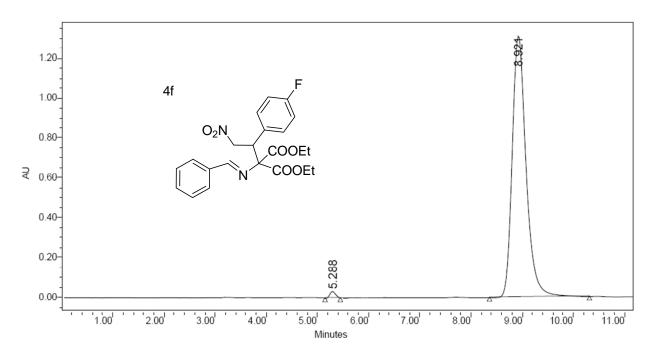


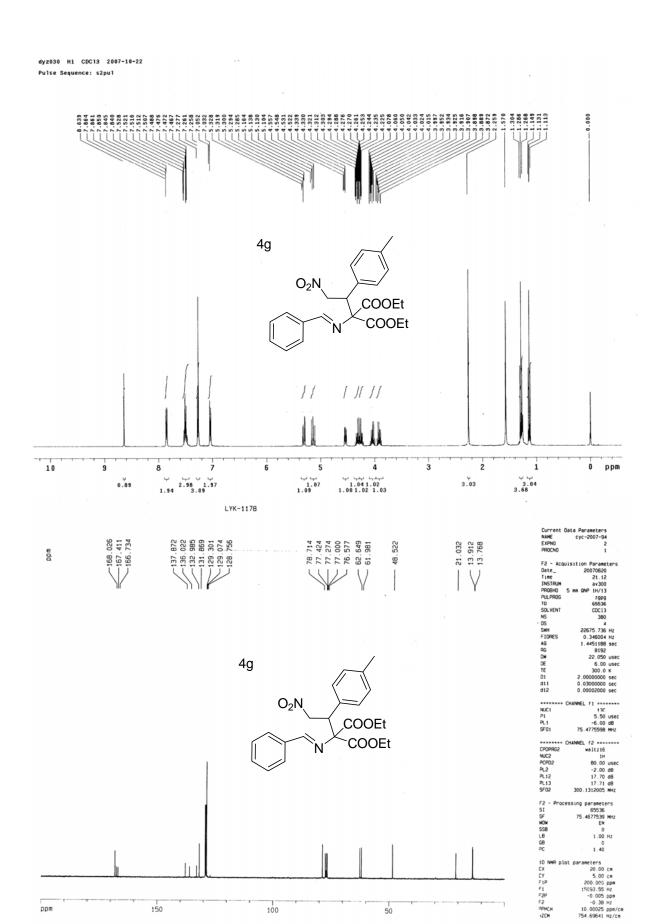
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.898	670568	3.06	62598	5.63
2	8.754	18720098	96.94	1049294	94.37



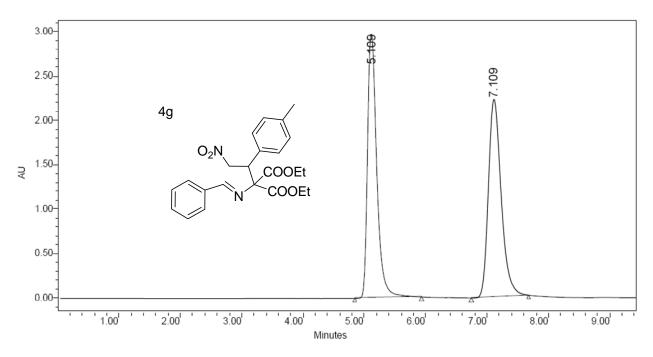


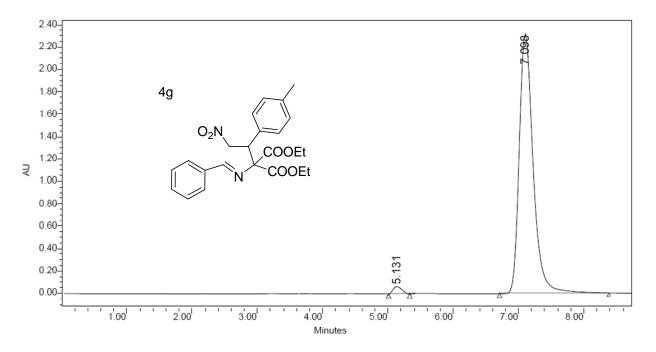

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.004	34475834	49.50	2773649	69.24
2	11.871	35174333	50.50	1232386	30.76


Γ	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.968	653089	1.64	66090	4.52
2	11.709	39115139	98.36	1395836	95.48

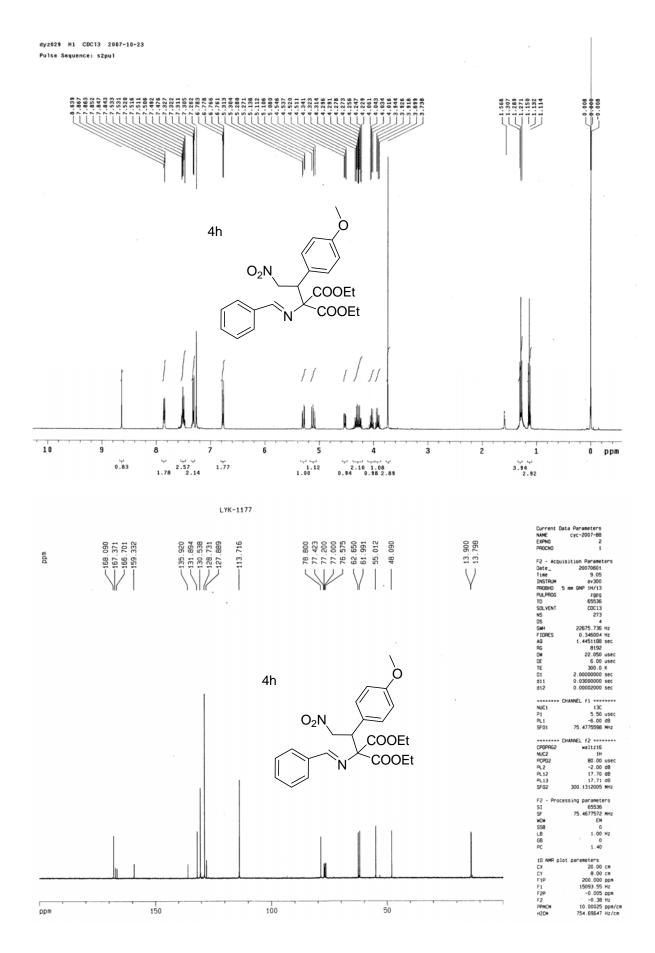


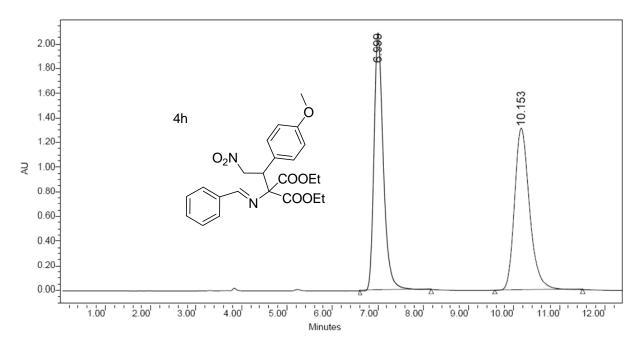
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.296	20044936	49.74	2012599	65.55
2	8.998	20256299	50.26	1057955	34.45


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.288	272322	1.09	33714	2.51
2	8.921	24738611	98.91	1311358	97.49

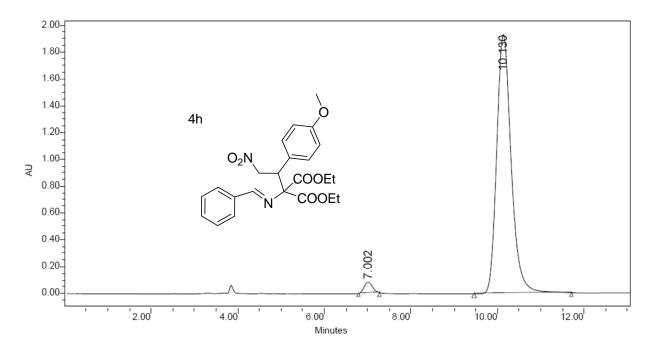

100

ppm

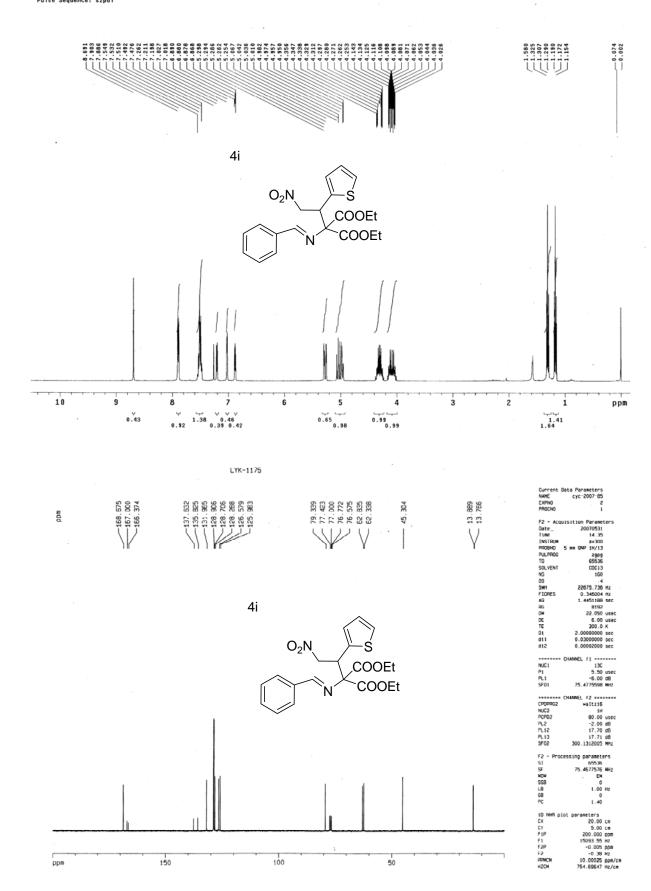

150

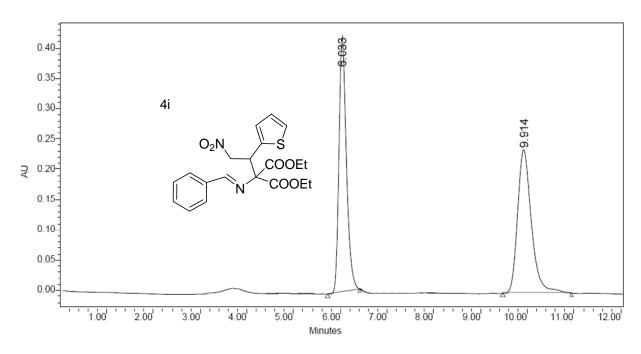


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.109	31186160	49.25	3000680	57.34
2	7.109	32131185	50.75	2232727	42.66

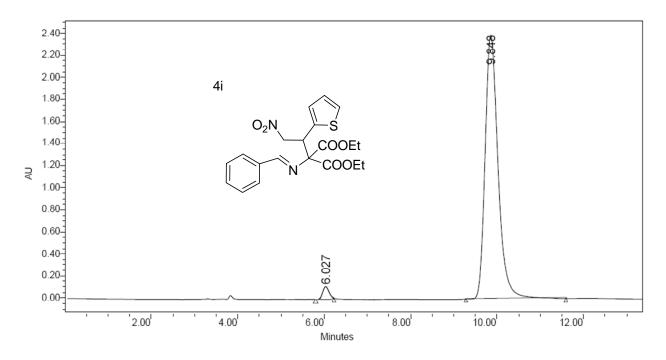


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.131	660321	1.88	67129	2.82
2	7.098	34426483	98.12	2317271	97.18

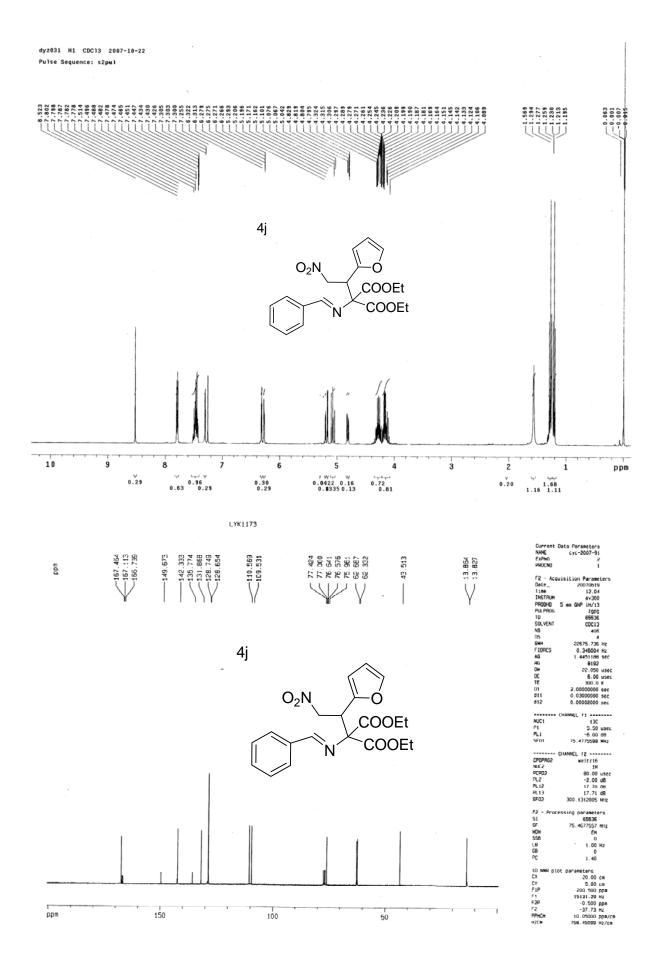


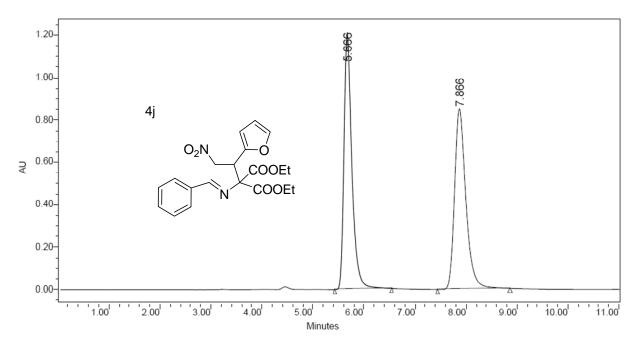


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.999	30032240	49.77	2083754	61.30
2	10.153	30307835	50.23	1315284	38.70

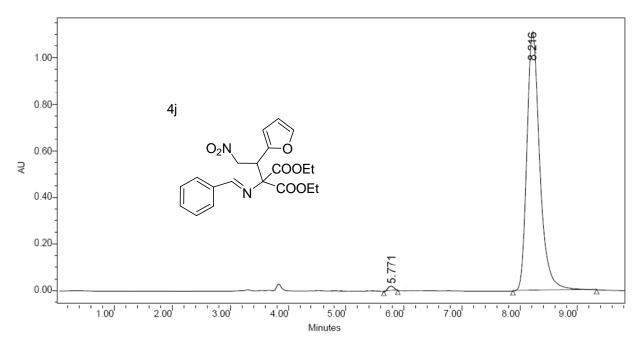


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.002	1083278	2.35	83555	4.15
2	10.130	45097620	97.65	1931185	95.85

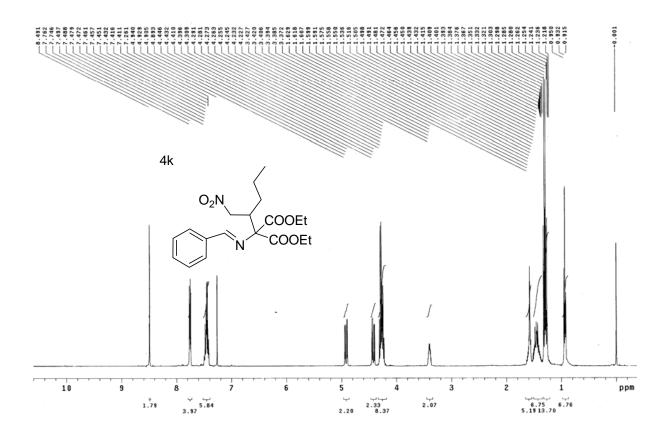


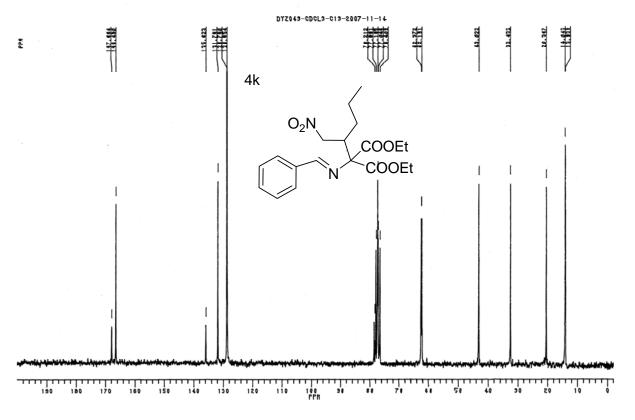


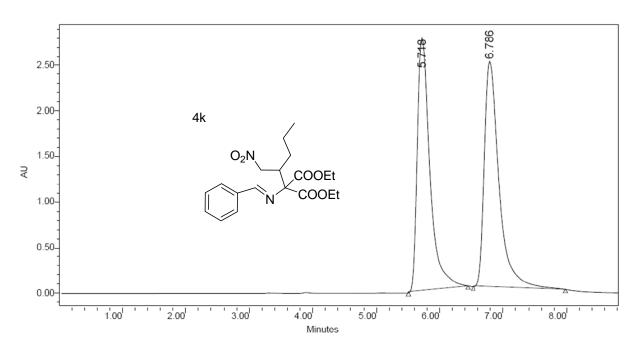
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.033	4666399	48.79	420996	63.98
2	9.914	4897633	51.21	237040	36.02

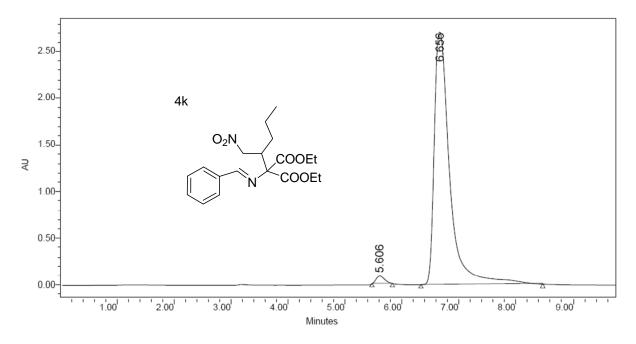


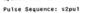
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.027	1077316	2.12	107172	4.29
2	9.848	49816698	97.88	2389654	95.71

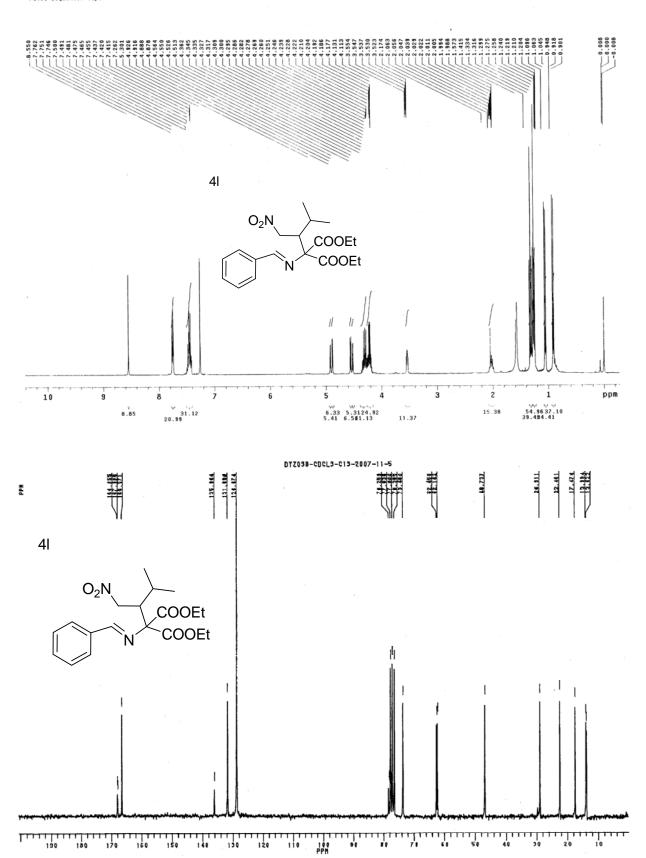


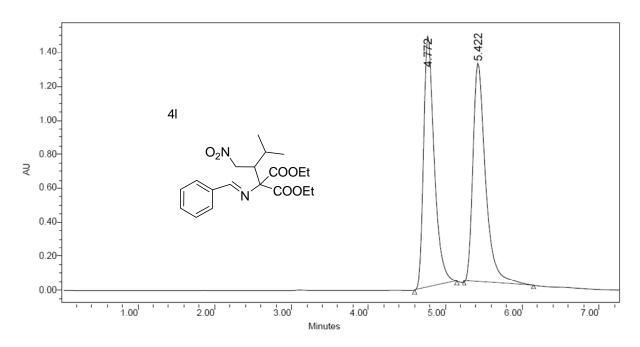


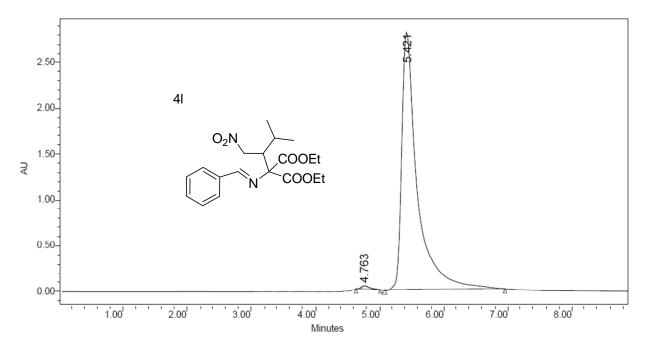

		RT (min)	Area (V *sec)	% Area	Height (V)	% Height
Ī	1	5.666	13065431	49.87	1209456	58.68
	2	7.866	13132082	50.13	851547	41.32

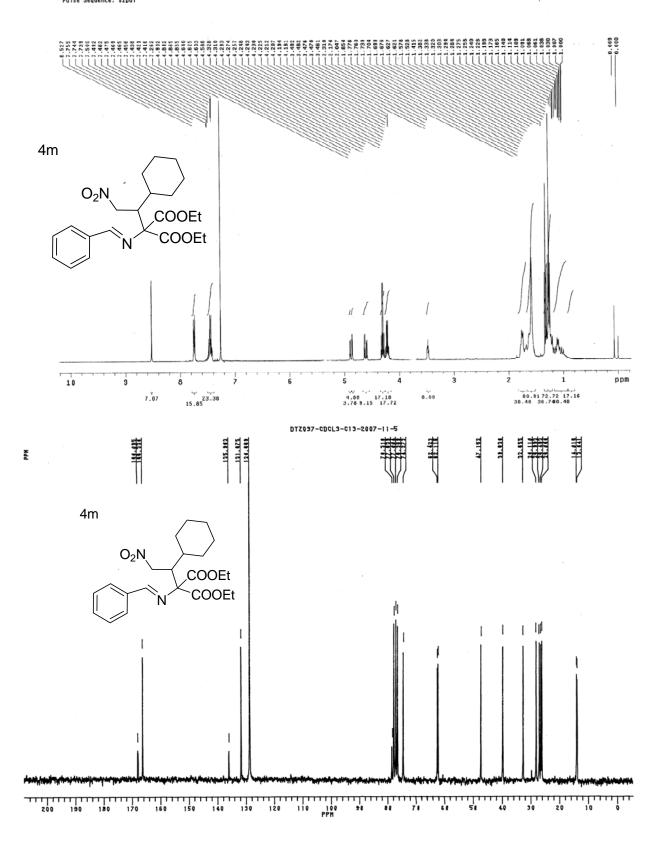

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.771	178668	1.03	22613	1.99
2	8.216	17200896	98.97	1111971	98.01

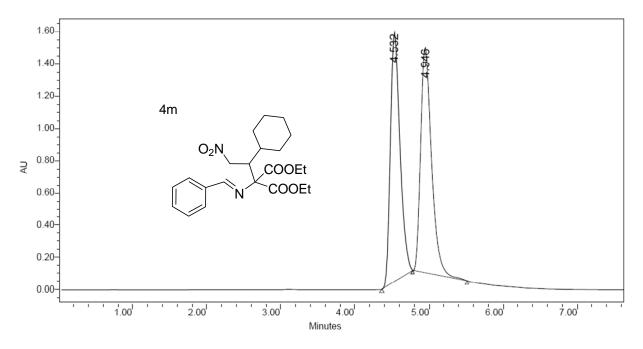




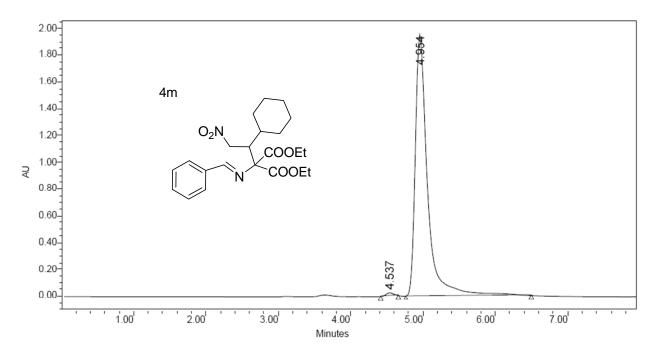

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.718	38585412	49.07	2776712	52.85
2	6.786	40049019	50.93	2477253	47.15


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.606	799788	1.54	78724	2.82
2	6.656	51072365	98.46	2711041	97.18

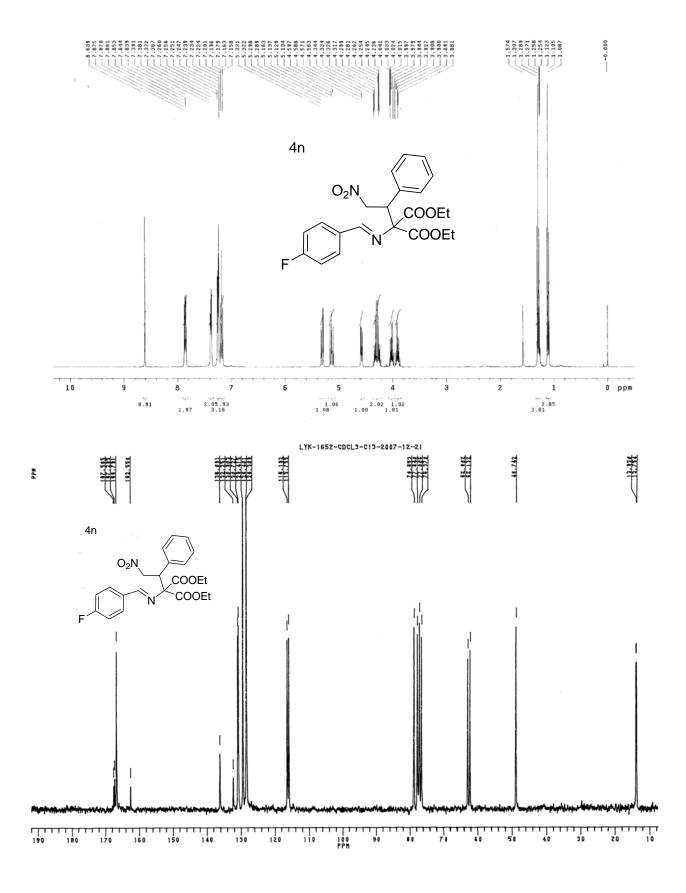


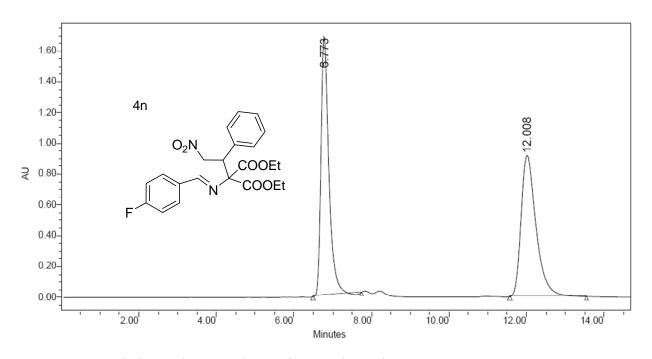


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	4.772	14264475	49.17	1481644	53.39
2	5.422	14744570	50.83	1293355	46.61

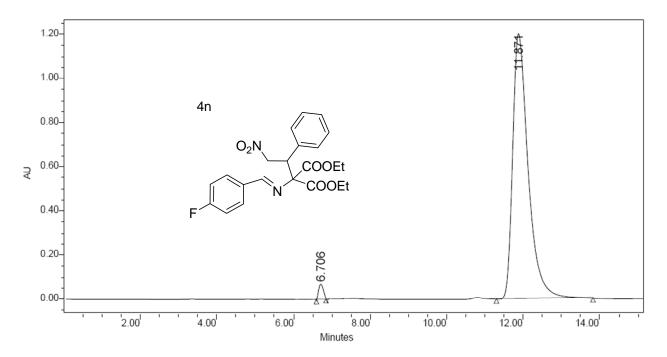


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	4.763	387059	0.80	39226	1.37
2	5.421	48008700	99.20	2816114	98.63

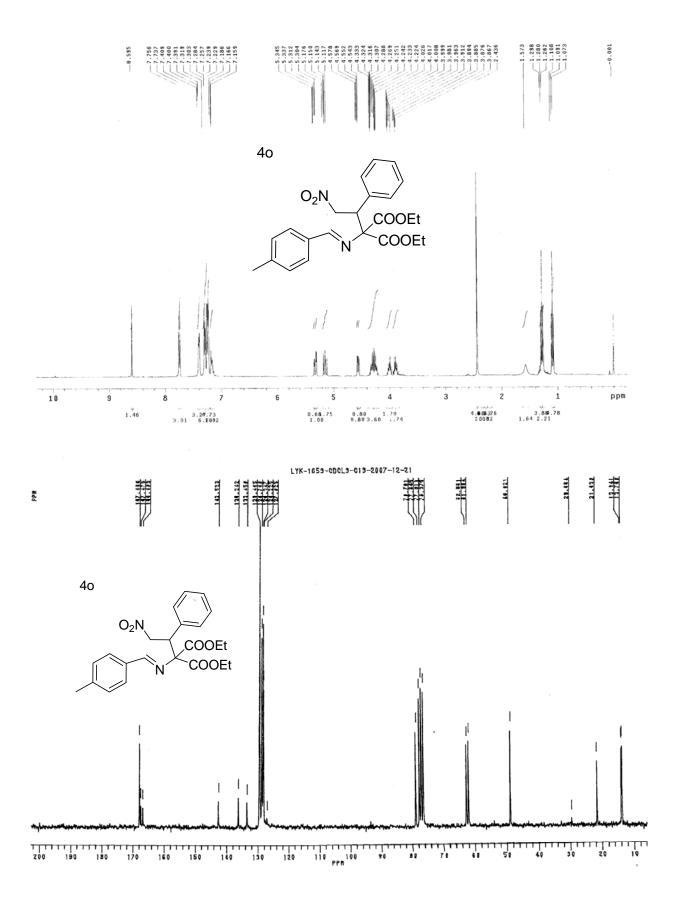


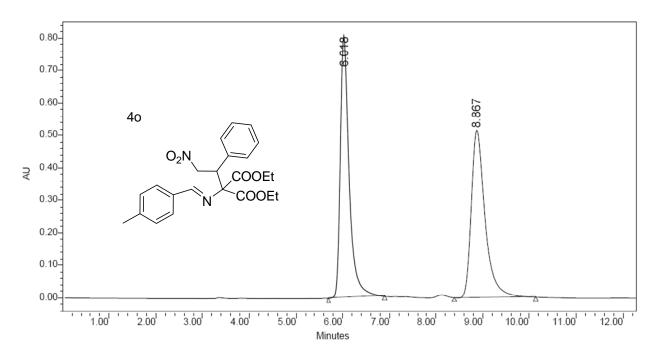


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	4.532	14048308	49.39	1545859	52.42
2	4.946	14392656	50.61	1403294	47.58

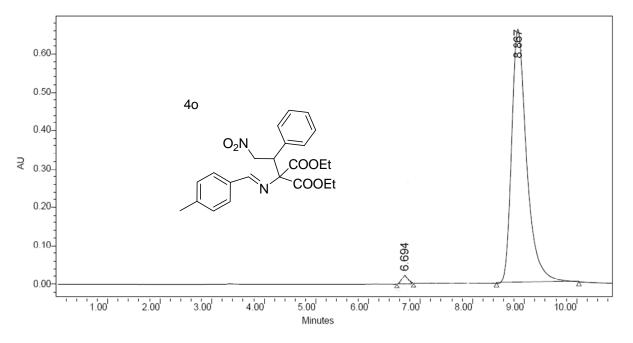


		RT (min)	Area (V *sec)	% Area	Height (V)	% Height
	1	4.537	178011	0.77	24320	1.23
1	2	4.954	22928123	99.23	1951029	98.77

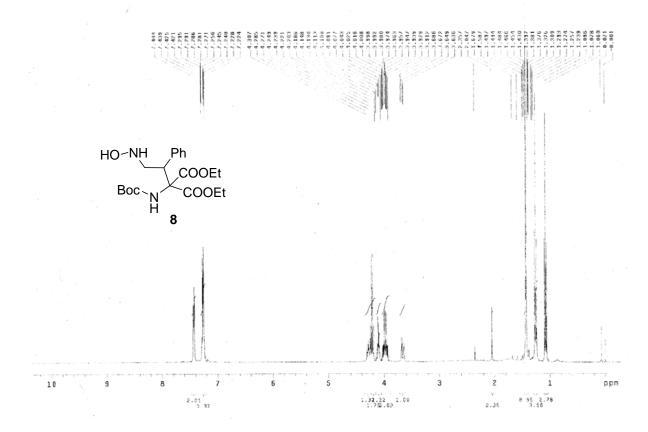


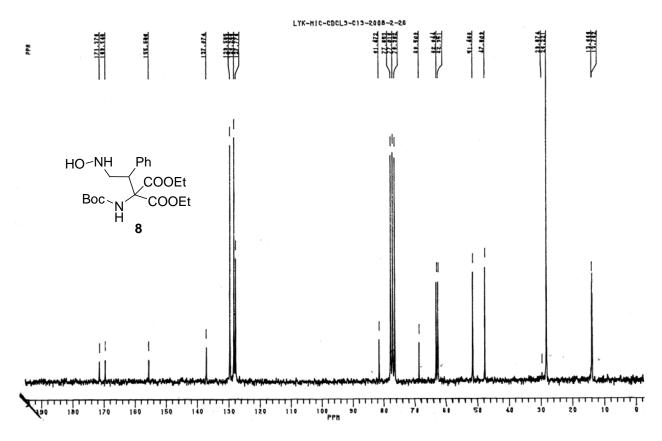


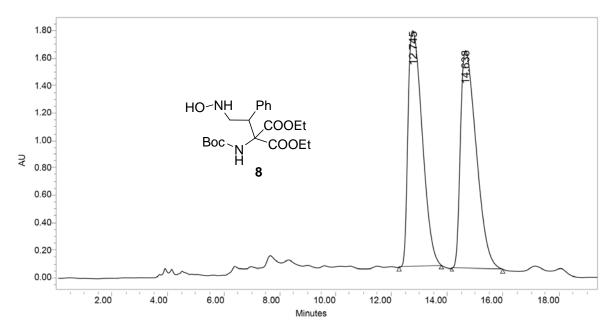
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.773	23931980	49.32	1682872	64.74
2	12.008	24593458	50.68	916412	35.26



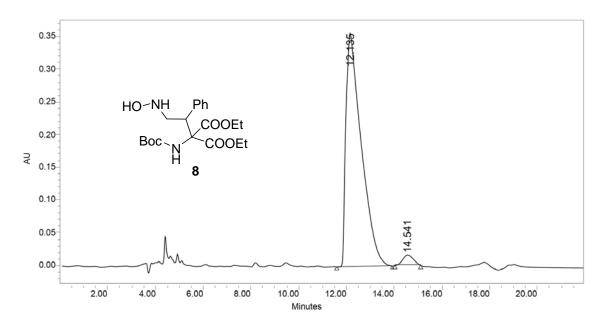
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.706	609620	1.77	69756	5.49
2	11.871	33840379	98.23	1201126	94.51

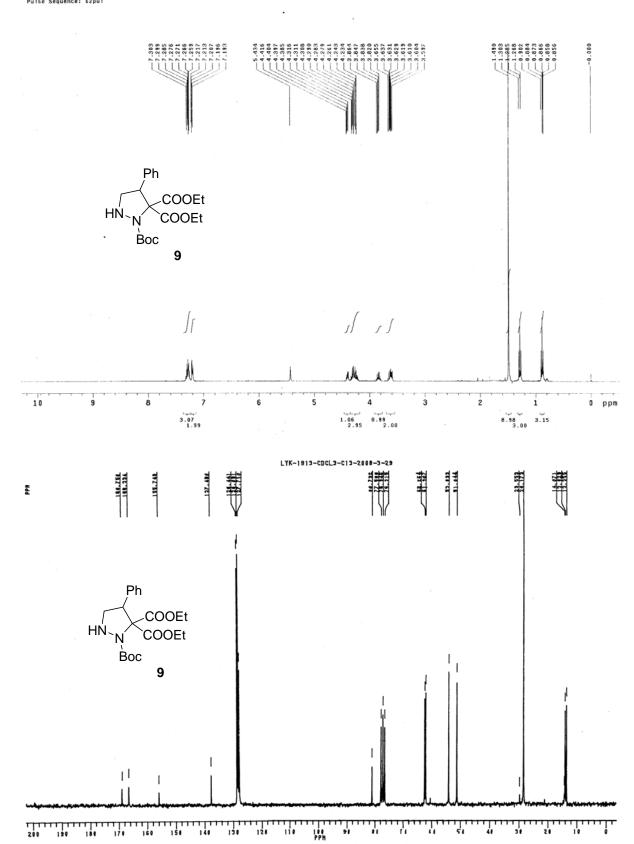


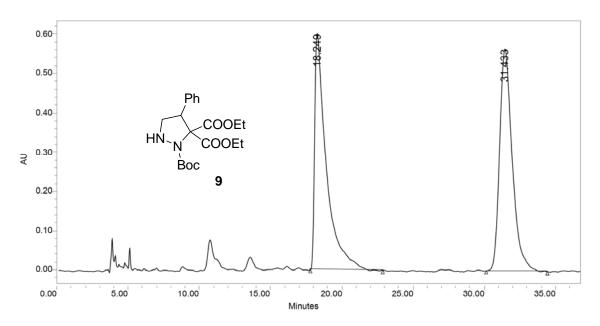

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.018	10652941	50.22	806607	61.01
2	8.867	10557558	49.78	515472	38.99



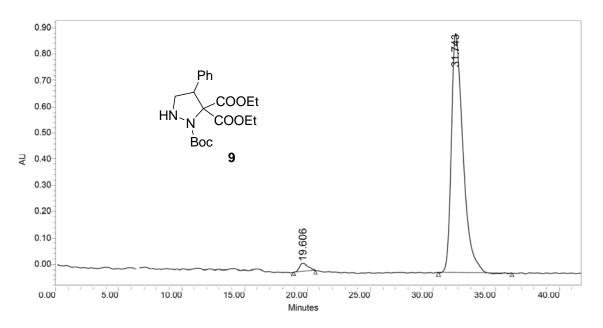
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.694	197702	1.46	51427	7.22
2	8.867	13358292	98.54	660539	92.78



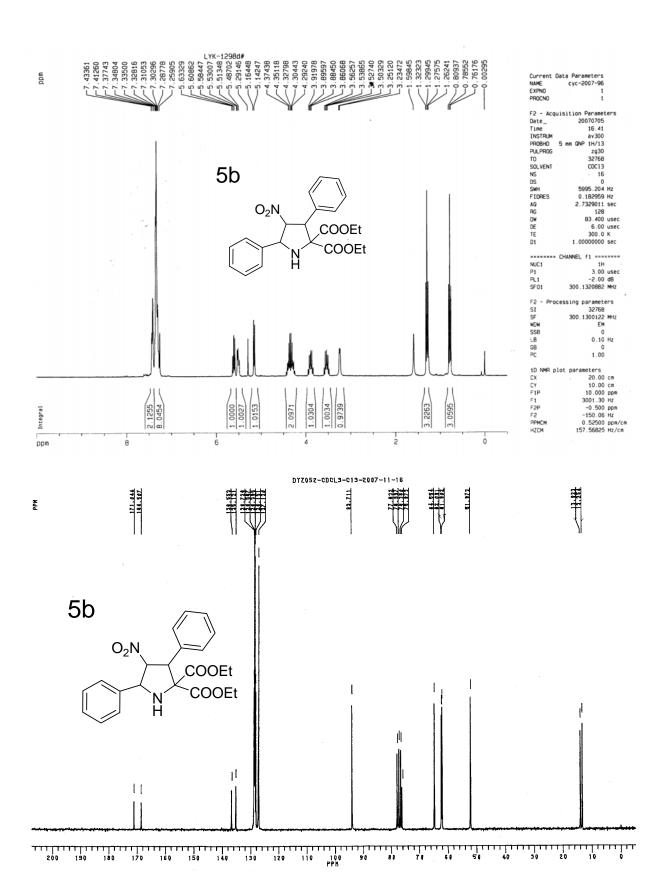


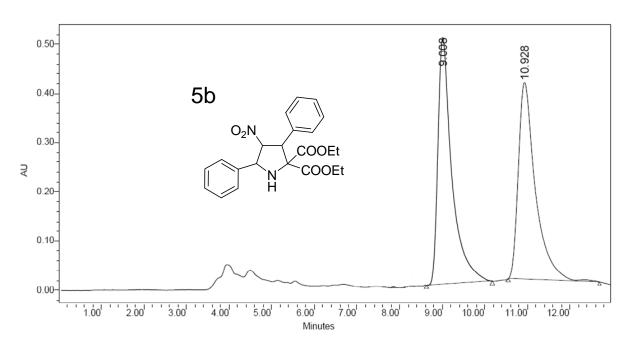


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	12.745	61202258	49.44	1722993	52.01
2	14.638	62594077	50.56	1589896	47.99

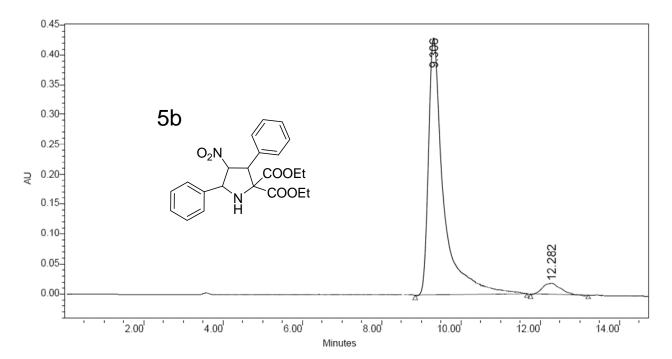


		RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	1	12.135	15927653	96.92	356412	95.66
	2	14.541	505871	3.08	16175	4.34

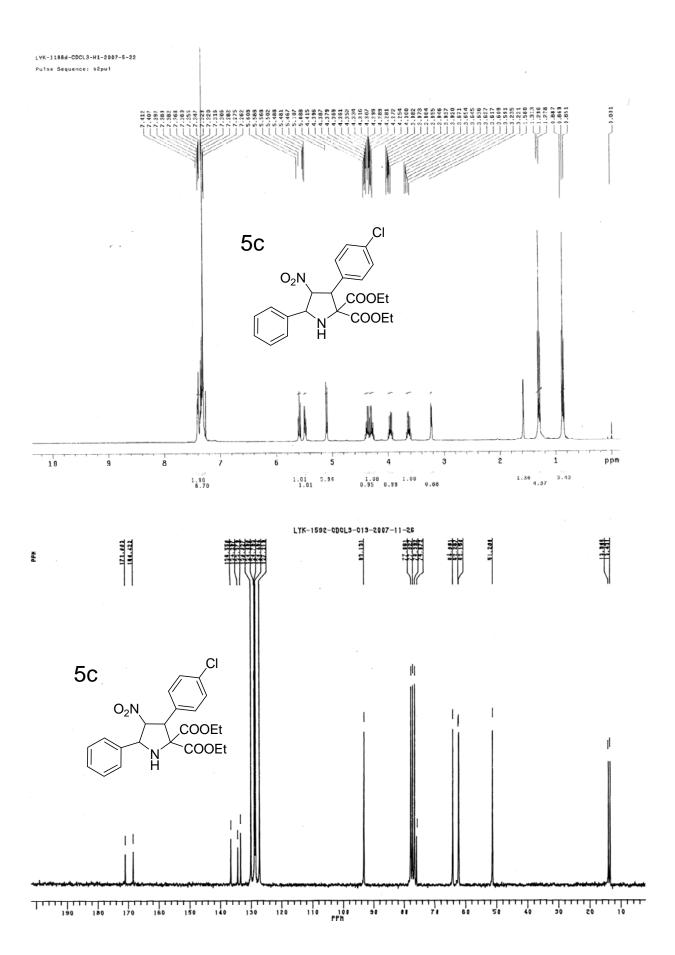


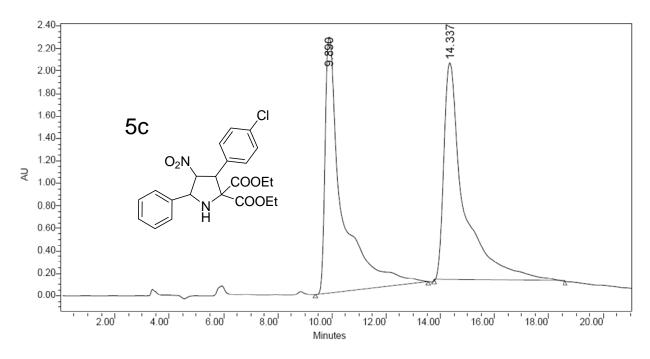


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	18.249	34163802	49.47	599773	51.50
2	31.433	34890523	50.53	564826	48.50

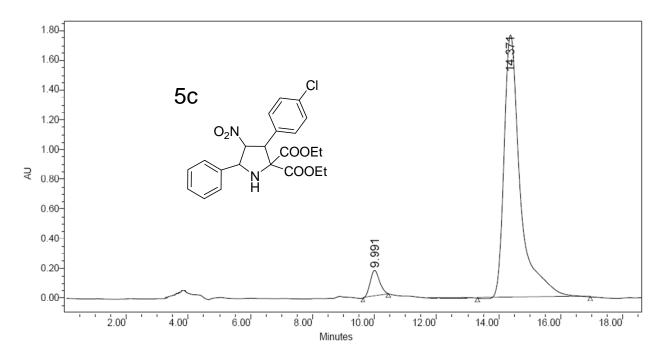


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	19.606	1520097	2.51	31180	3.31
2	31.743	59141644	97.49	910614	96.69

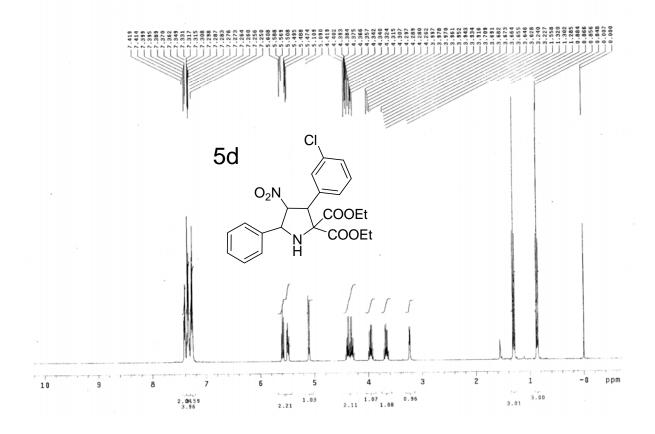


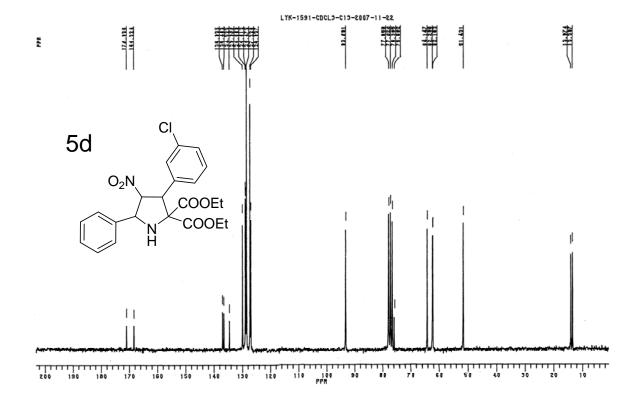


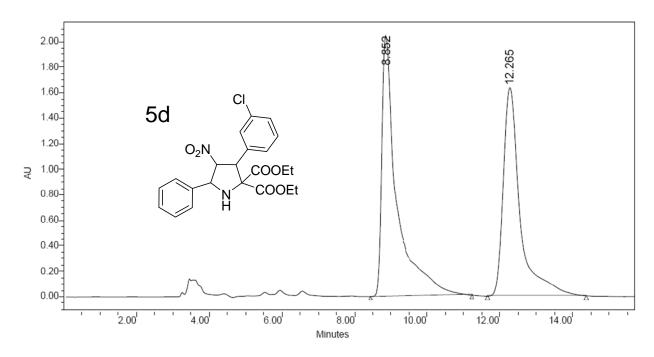
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	9.008	11463359	50.67	502086	55.61
2	10.928	11161825	49.33	400809	44.39

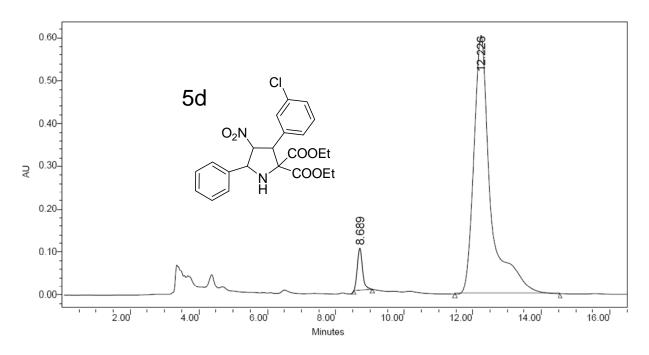


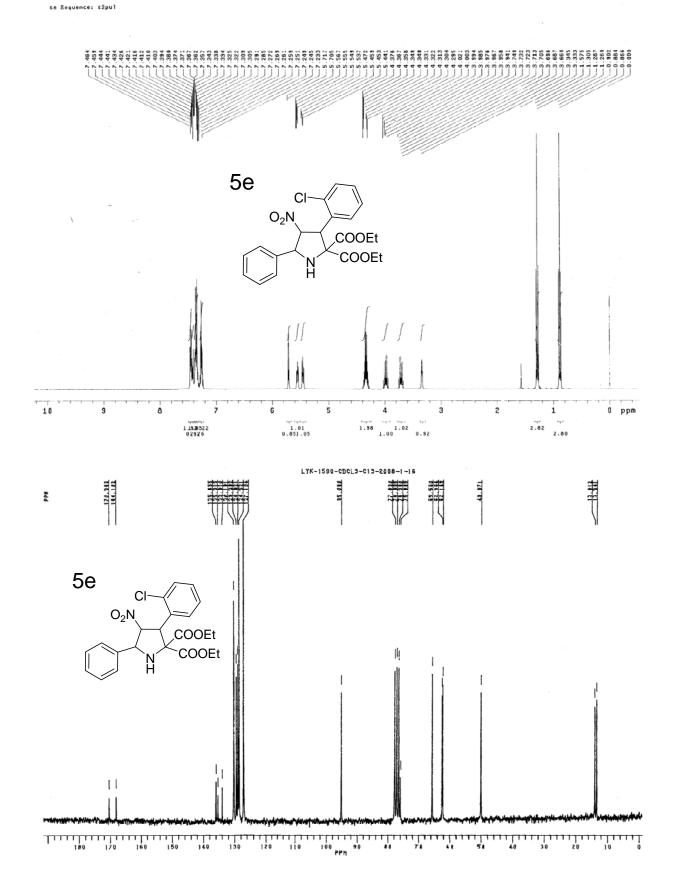
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	9.306	12508168	95.04	430782	95.62
2	12.282	652496	4.96	19754	4.38

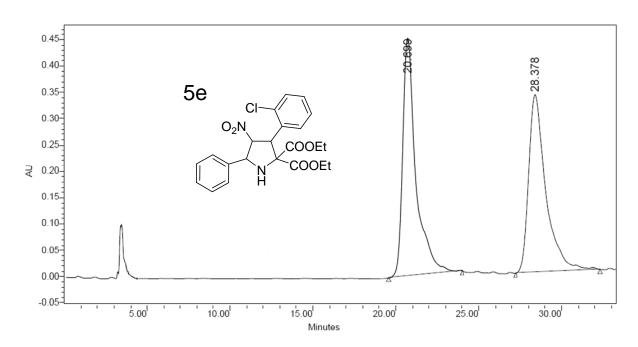




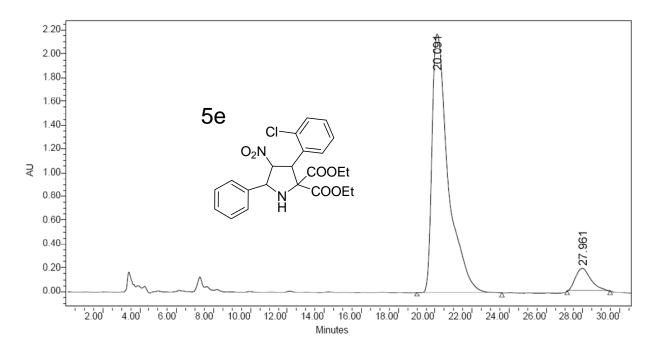

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	9.890	100797944	49.73	2278708	54.06
2	14.337	101893587	50.27	1936346	45.94


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	9.991	3679014	5.37	173954	8.95
2	14.371	64806680	94.63	1769168	91.05

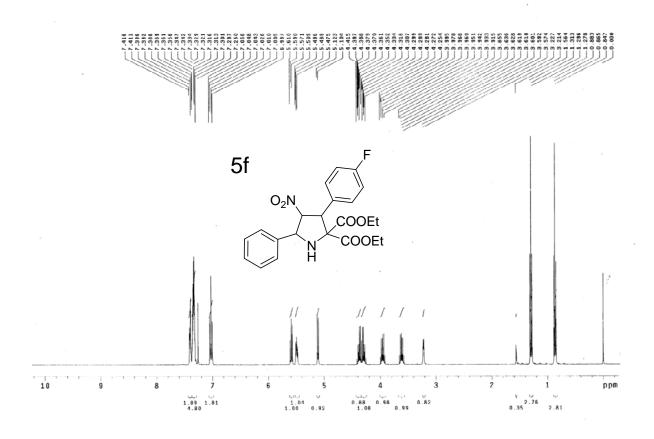


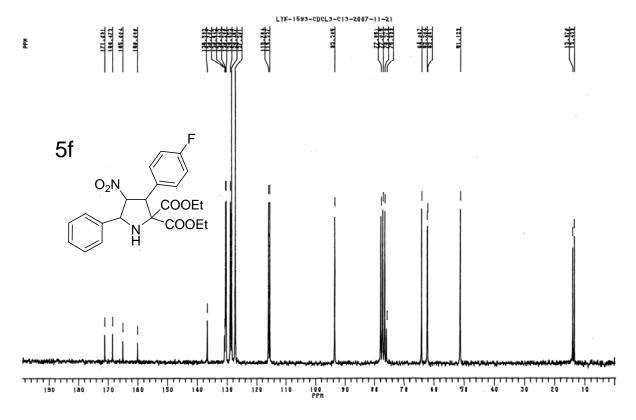


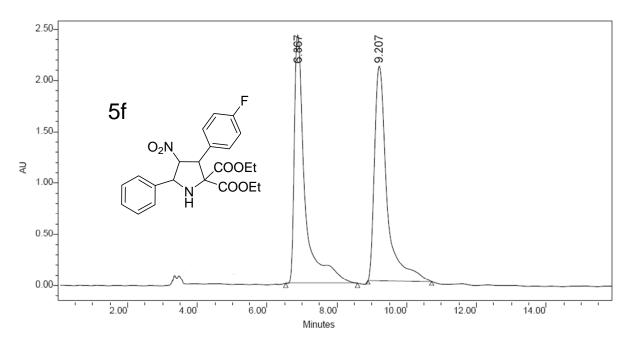
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.852	52903135	50.10	1992535	54.95
2	12.265	52700197	49.90	1633437	45.05

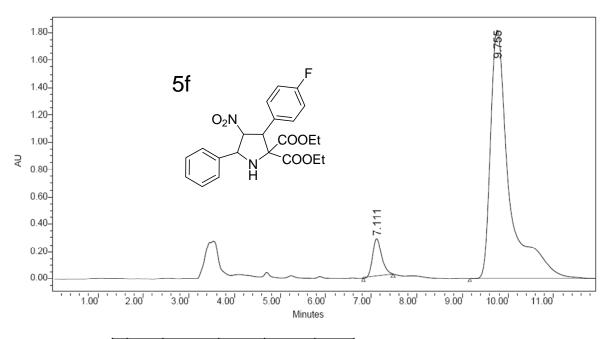


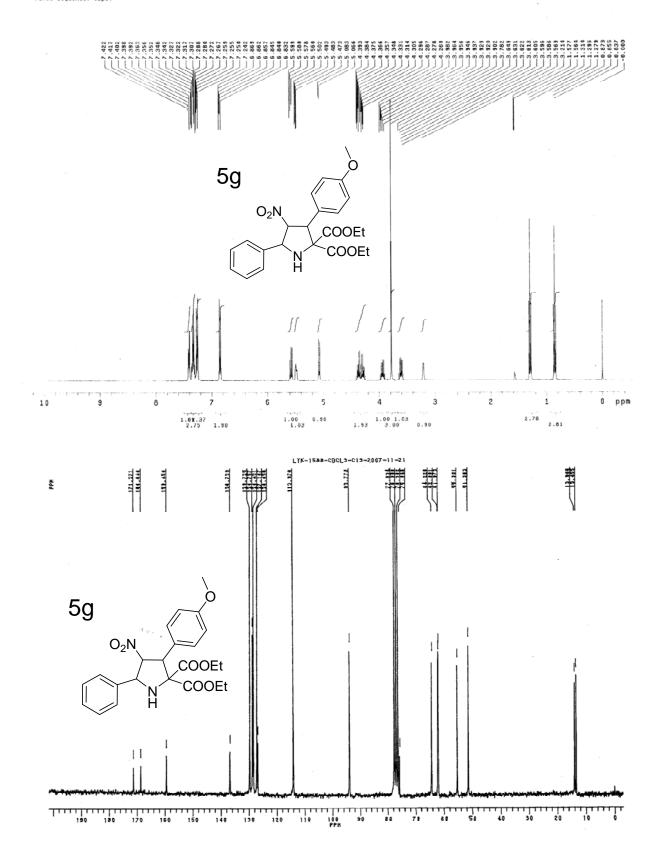
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.689	1057017	4.86	98965	14.08
2	12.226	20684425	95.14	603928	85.92

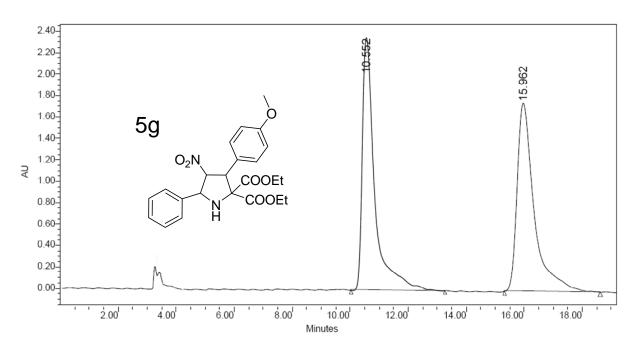




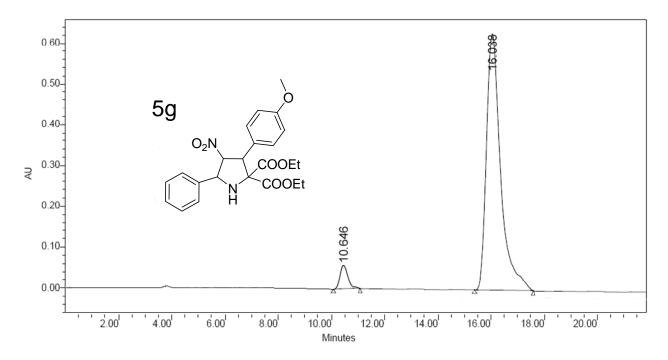

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	20.699	25141342	50.79	451633	57.22
2	28.378	24355064	49.21	337710	42.78


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	20.091	133130893	92.13	2175475	91.92
2	27.961	11368740	7.87	191196	8.08

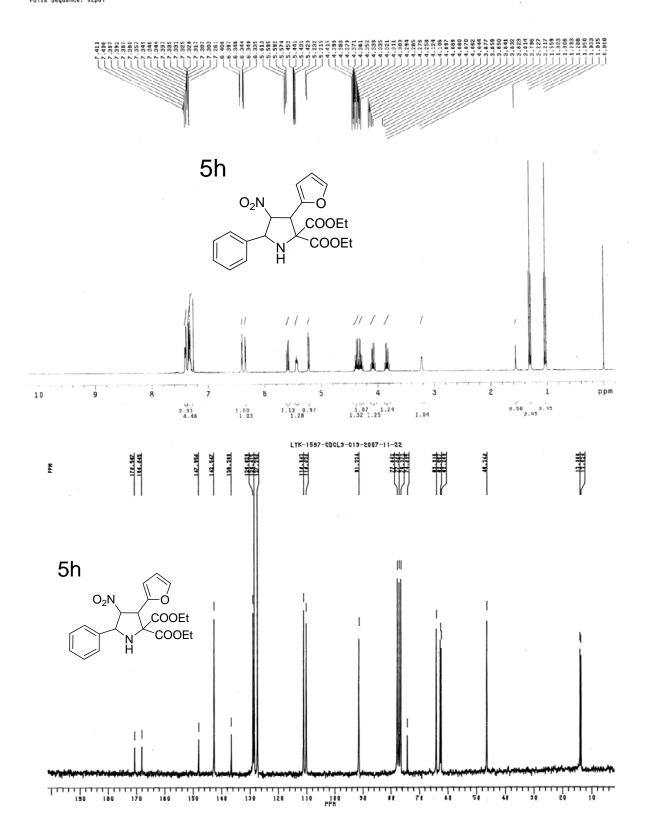


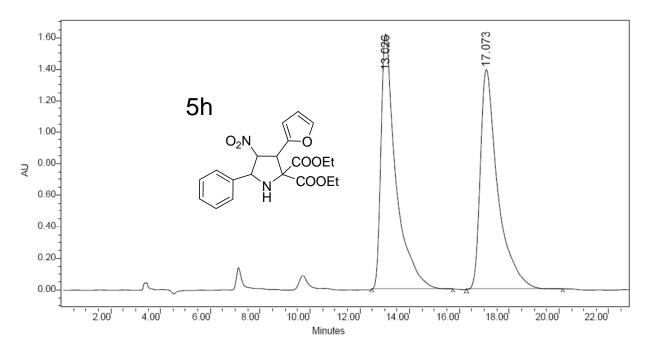


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.867	52036659	49.61	2431676	53.59
2	9.207	52853085	50.39	2105465	46.41

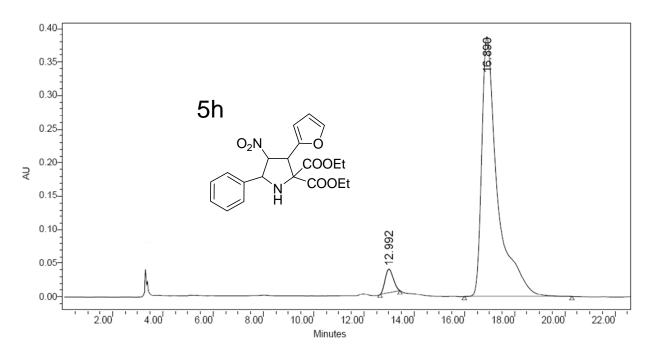


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.111	3909557	6.93	277034	13.23
2	9.755	52467161	93.07	1816392	86.77

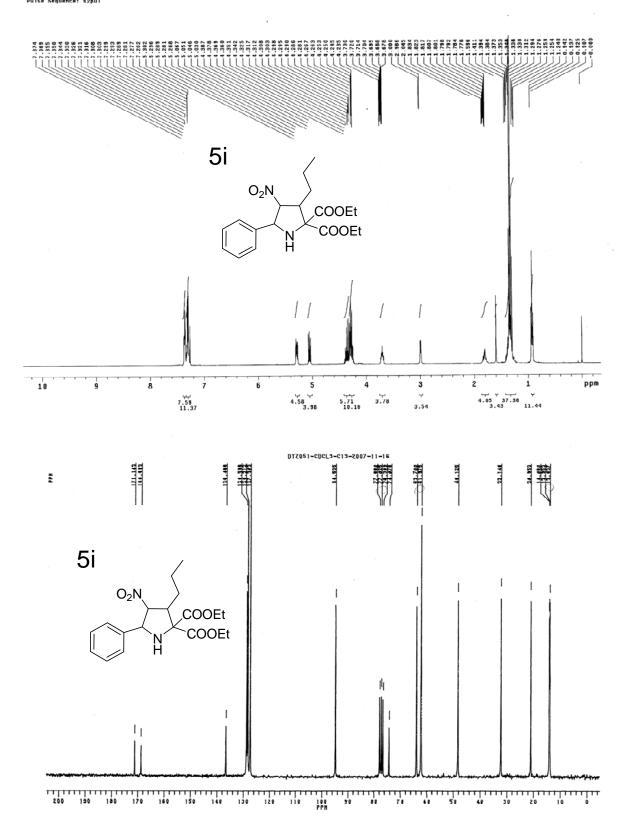


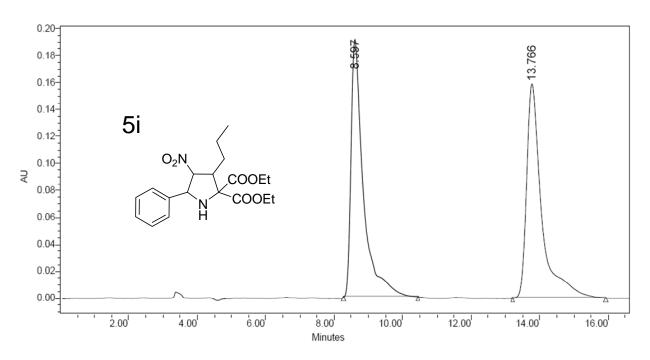


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	10.552	70740785	49.52	2359688	57.30
2	15.962	72112643	50.48	1758587	42.70

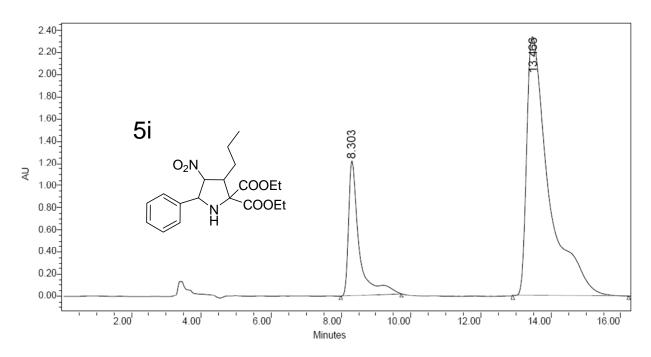


		RT (min)	Area (V *sec)	% Area	Height (V)	% Height
ĺ	1	10.646	1221996	4.50	57756	8.21
	2	16.038	25955264	95.50	645836	91.79

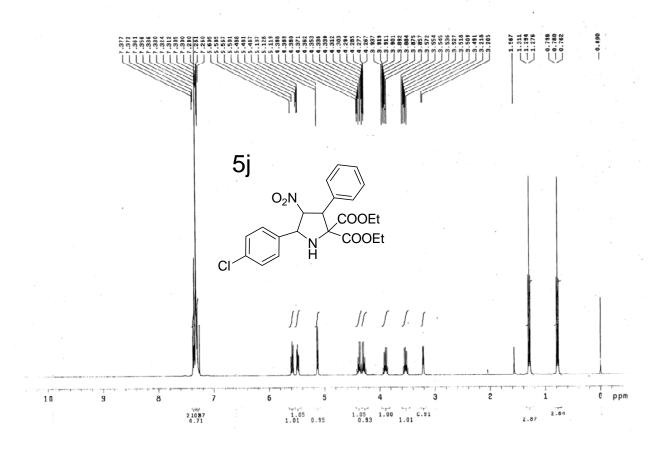


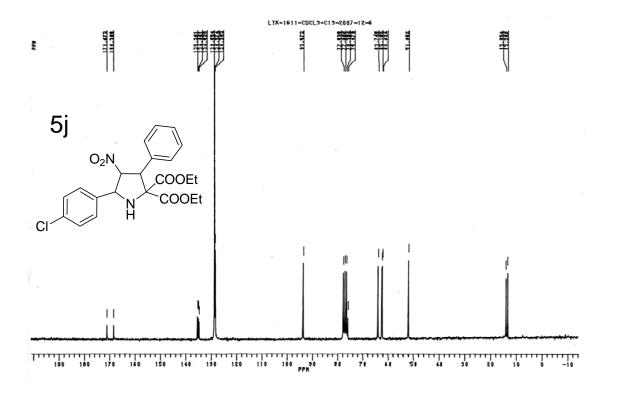


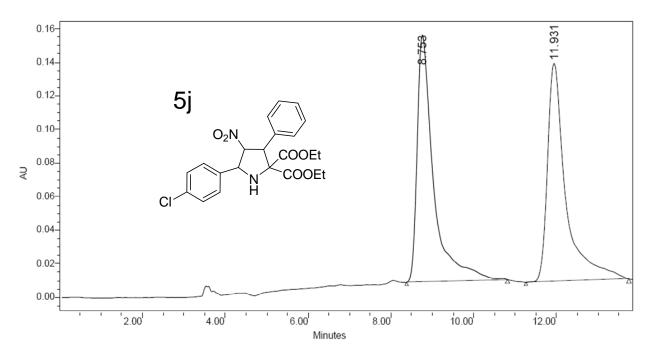
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	13.026	67134853	49.78	1614526	53.70
2	17.073	67727719	50.22	1392259	46.30

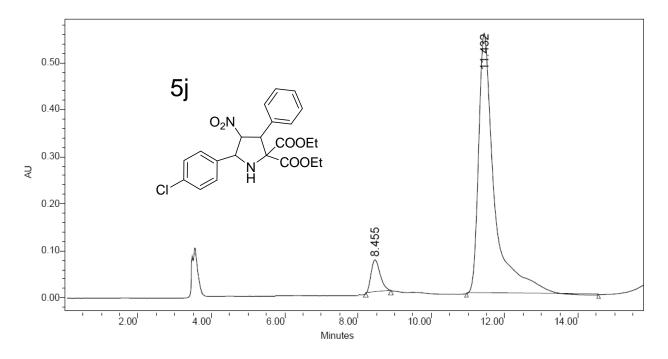


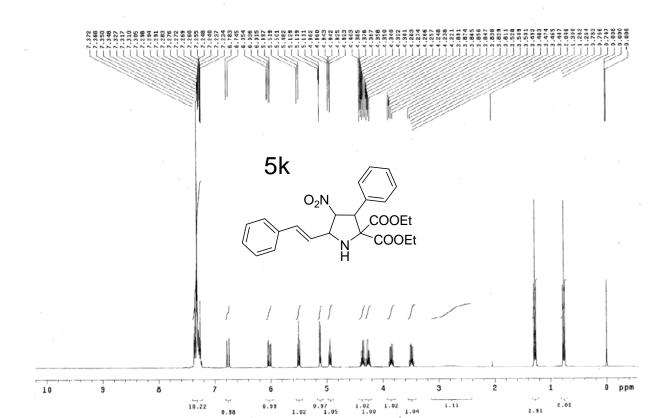
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	12.992	792897	4.47	35089	8.31
2	16.890	16936550	95.53	387076	91.69

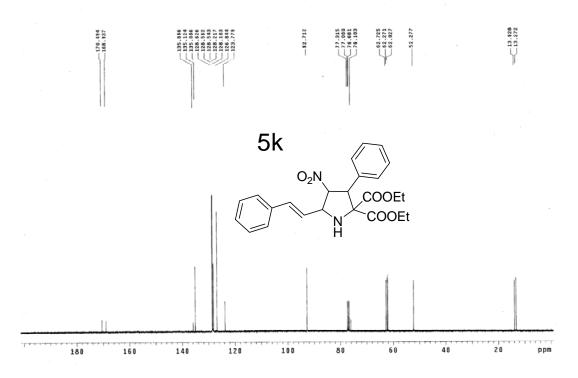


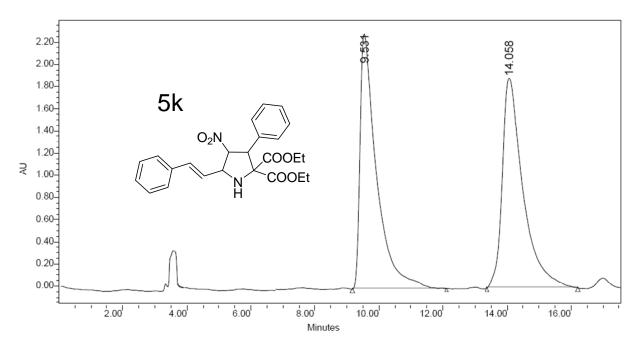



	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.597	4776313	49.46	190793	54.51
2	13.766	4880211	50.54	159225	45.49

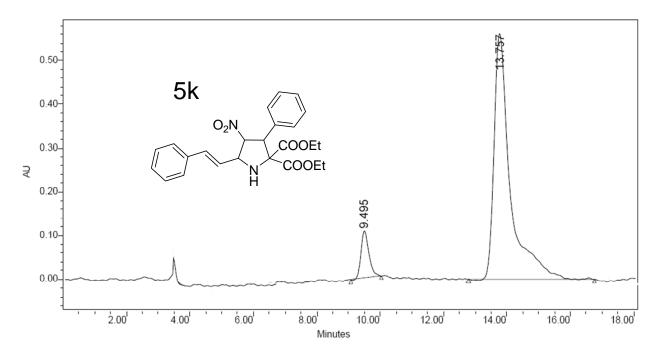

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.303	25724187	19.92	1218325	34.26
2	13.466	103441285	80.08	2338216	65.74

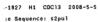


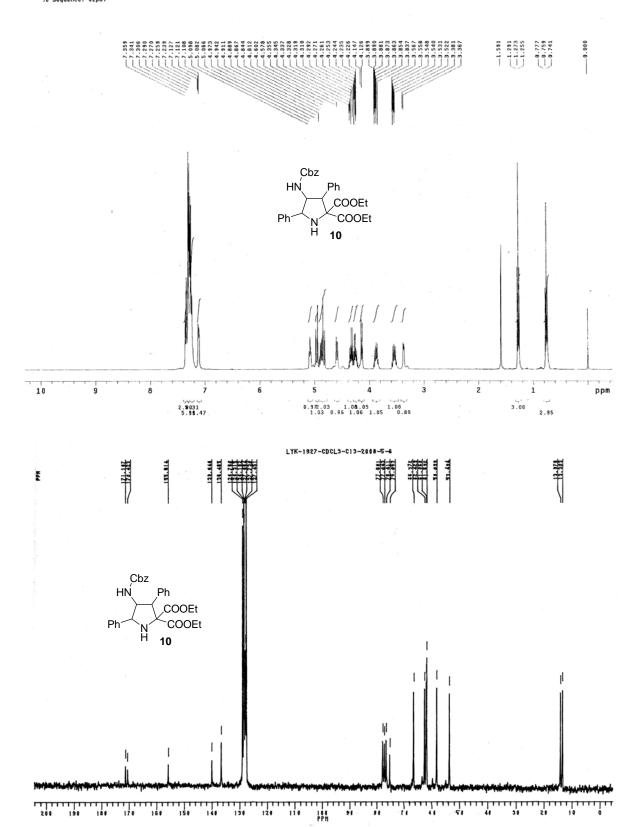

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.753	4036921	50.21	146725	53.03
2	11.931	4003401	49.79	129962	46.97

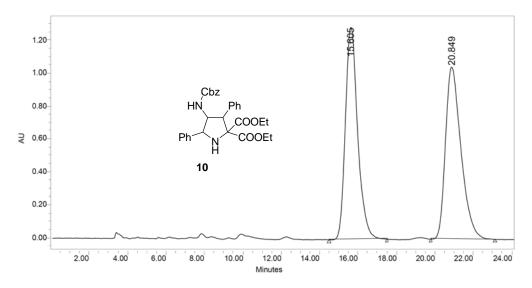


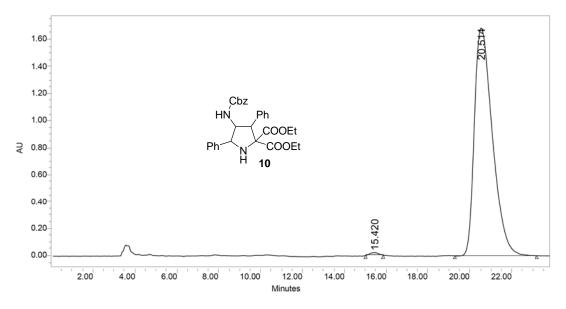
	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	8.455	1201173	6.70	69110	11.09
2	11.432	16736688	93.30	553793	88.91








	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	9.531	82054569	49.17	2295146	54.85
2	14.058	84822039	50.83	1889221	45.15


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	9.495	1910085	8.69	108616	16.20
2	13.757	20081311	91.31	561706	83.80

		RT (min)	Area (V *sec)	% Area	Height (V)	% Height
Γ	1	15.605	57256702	49.38	1288137	55.24
Ŀ	2	20.849	58683473	50.62	1043899	44.76

		RT (min)	Area (V *sec)	% Area	Height (V)	% Height
Ī	1	15.420	552010	0.54	19882	1.17
Ī	2	20.514	100747124	99.46	1683626	98.83